scholarly journals Combinatorial identities involving the central coefficients of a Sheffer matrix

2019 ◽  
Vol 13 (2) ◽  
pp. 495-517
Author(s):  
Emanuele Munarini

Given m ? N, m ? 1, and a Sheffer matrix S = [sn,k]n,k?0, we obtain the exponential generating series for the coefficients (a+(m+1)n a+mn)-1 sa+(m+1)n,a+mn. Then, by using this series, we obtain two general combinatorial identities, and their specialization to r-Stirling, r-Lah and r-idempotent numbers. In particular, using this approach, we recover two well known binomial identities, namely Gould's identity and Hagen-Rothe's identity. Moreover, we generalize these results obtaining an exchange identity for a cross sequence (or for two Sheffer sequences) and an Abel-like identity for a cross sequence (or for an s-Appell sequence). We also obtain some new Sheffer matrices.

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
D. Merlini ◽  
R. Sprugnoli ◽  
M. C. Verri

International audience It has become customary to prove binomial identities by means of the method for automated proofs as developed by Petkovšek, Wilf and Zeilberger. In this paper, we wish to emphasize the role of "human'' and constructive proofs in contrast with the somewhat lazy attitude of relaying on "automated'' proofs. As a meaningful example, we consider the four formulas by Romik, related to Motzkin and central trinomial numbers. We show that a proof of these identities can be obtained by using the method of coefficients, a human method only requiring hand computations.


2020 ◽  
Vol 17 (2) ◽  
pp. 256-277
Author(s):  
Ol'ga Veselovska ◽  
Veronika Dostoina

For the derivatives of Chebyshev second-kind polynomials of a complex vafiable, a system of functions biorthogonal with them on closed curves of the complex plane is constructed. Properties of these functions and the conditions of expansion of analytic functions in series in polynomials under consideration are established. The examples of such expansions are given. In addition, we obtain some combinatorial identities of independent interest.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Jan-Willem M. van Ittersum

AbstractThe algebra of so-called shifted symmetric functions on partitions has the property that for all elements a certain generating series, called the q-bracket, is a quasimodular form. More generally, if a graded algebra A of functions on partitions has the property that the q-bracket of every element is a quasimodular form of the same weight, we call A a quasimodular algebra. We introduce a new quasimodular algebra $$\mathcal {T}$$ T consisting of symmetric polynomials in the part sizes and multiplicities.


2021 ◽  
Vol 19 (1) ◽  
pp. 284-296
Author(s):  
Hye Kyung Kim

Abstract Many mathematicians have studied degenerate versions of quite a few special polynomials and numbers since Carlitz’s work (Utilitas Math. 15 (1979), 51–88). Recently, Kim et al. studied the degenerate gamma random variables, discrete degenerate random variables and two-variable degenerate Bell polynomials associated with Poisson degenerate central moments, etc. This paper is divided into two parts. In the first part, we introduce a new type of degenerate Bell polynomials associated with degenerate Poisson random variables with parameter α > 0 \alpha \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the fully degenerate Bell polynomials. We derive some combinatorial identities for the fully degenerate Bell polynomials related to the n n th moment of the degenerate Poisson random variable, special numbers and polynomials. In the second part, we consider the fully degenerate Bell polynomials associated with degenerate Poisson random variables with two parameters α > 0 \alpha \gt 0 and β > 0 \beta \hspace{-0.15em}\gt \hspace{-0.15em}0 , called the two-variable fully degenerate Bell polynomials. We show their connection with the degenerate Poisson central moments, special numbers and polynomials.


2021 ◽  
Vol 71 (2) ◽  
pp. 301-316
Author(s):  
Reshma Sanjhira

Abstract We propose a matrix analogue of a general inverse series relation with an objective to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney, Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968].


Author(s):  
ROBERTO TAURASO
Keyword(s):  

Abstract Let p be a prime and let x be a p-adic integer. We prove two supercongruences for truncated series of the form $$\begin{align*}\sum_{k=1}^{p-1} \frac{(x)_k}{(1)_k}\cdot \frac{1}{k}\sum_{1\le j_1\le\cdots\le j_r\le k}\frac{1}{j_1^{}\cdots j_r^{}}\quad\mbox{and}\quad \sum_{k=1}^{p-1} \frac{(x)_k(1-x)_k}{(1)_k^2}\cdot \frac{1}{k}\sum_{1\le j_1\le\cdots\le j_r\le k}\frac{1}{j_1^{2}\cdots j_r^{2}}\end{align*}$$ which generalise previous results. We also establish q-analogues of two binomial identities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Pierrick Bousseau ◽  
Honglu Fan ◽  
Shuai Guo ◽  
Longting Wu

Abstract We prove a higher genus version of the genus $0$ local-relative correspondence of van Garrel-Graber-Ruddat: for $(X,D)$ a pair with X a smooth projective variety and D a nef smooth divisor, maximal contact Gromov-Witten theory of $(X,D)$ with $\lambda _g$ -insertion is related to Gromov-Witten theory of the total space of ${\mathcal O}_X(-D)$ and local Gromov-Witten theory of D. Specializing to $(X,D)=(S,E)$ for S a del Pezzo surface or a rational elliptic surface and E a smooth anticanonical divisor, we show that maximal contact Gromov-Witten theory of $(S,E)$ is determined by the Gromov-Witten theory of the Calabi-Yau 3-fold ${\mathcal O}_S(-E)$ and the stationary Gromov-Witten theory of the elliptic curve E. Specializing further to $S={\mathbb P}^2$ , we prove that higher genus generating series of maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ are quasimodular and satisfy a holomorphic anomaly equation. The proof combines the quasimodularity results and the holomorphic anomaly equations previously known for local ${\mathbb P}^2$ and the elliptic curve. Furthermore, using the connection between maximal contact Gromov-Witten invariants of $({\mathbb P}^2,E)$ and Betti numbers of moduli spaces of semistable one-dimensional sheaves on ${\mathbb P}^2$ , we obtain a proof of the quasimodularity and holomorphic anomaly equation predicted in the physics literature for the refined topological string free energy of local ${\mathbb P}^2$ in the Nekrasov-Shatashvili limit.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Hye Kyung Kim

AbstractNumerous mathematicians have studied ‘poly’ as one of the generalizations to special polynomials, such as Bernoulli, Euler, Cauchy, and Genocchi polynomials. In relation to this, in this paper, we introduce the degenerate poly-Bell polynomials emanating from the degenerate polyexponential functions which are called the poly-Bell polynomials when $\lambda \rightarrow 0$ λ → 0 . Specifically, we demonstrate that they are reduced to the degenerate Bell polynomials if $k = 1$ k = 1 . We also provide explicit representations and combinatorial identities for these polynomials, including Dobinski-like formulas, recurrence relationships, etc.


Sign in / Sign up

Export Citation Format

Share Document