scholarly journals Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic receptors in rat brain

2005 ◽  
Vol 57 (1) ◽  
pp. 1-10
Author(s):  
Lidija Radenovic ◽  
Vesna Selakovic

The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150318026E">10.2298/ABS150318026E</a><u></b></font>

2007 ◽  
Vol 59 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Lidija Radenovic ◽  
Vesna Selakovic ◽  
Branka Janac ◽  
Dajana Todorovic

Stimulation of glutamate receptors induces neuronal nitric oxide (NO) release, which in turn modulates glutamate transmission. The involvement of ionotropic glutamate NMDA and AMPA/kainate receptors in induction of NO production in the rat brain was examined after injection of kainate, a non-NMDA receptor agonist; kainate plus 6-cyano- 7-nitroquinoxaline-2,3-dione (CNQX), a selective AMPA/kainate receptor antagonist; or kainate plus 2-amino-5-phosphonopentanoic acid (APV), a selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times (5 min, 15 min, 2 h, 48 h, and 7 days) in hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists APV and CNQX both provided sufficient neuroprotection in the sense of reducing nitrite concentrations, but with different mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in nitric oxide production. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150319031E">10.2298/ABS150319031E</a><u></b></font>


1997 ◽  
Vol 272 (3) ◽  
pp. R800-R812 ◽  
Author(s):  
T. Miyawaki ◽  
S. Suzuki ◽  
J. Minson ◽  
L. Arnolda ◽  
J. Chalmers ◽  
...  

We examined the role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors within the caudal ventrolateral medulla (CVLM) in mediating the sympathetic baroreceptor reflex in anesthetized and paralyzed rats. Bilateral microinjection into CVLM of either DL-2-amino-5-phosphonovaleric acid [APV; a selective N-methyl-D-aspartic acid (NMDA) receptor antagonist, 20 mM, 100 nl] or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; a selective AMPA/kainate receptor antagonist, 2 mM, 100 nl) alone failed to eliminate the aortic nerve stimulation-evoked hypotension and inhibition of splanchnic sympathetic nerve activity (SNA) or the cardiac-related rhythmicity of SNA. All components of the sympathetic-baroreceptor reflex were abolished when kynurenate (100 mM, 30 nl) or mixtures of APV and CNQX (10 and 1 mM, respectively, 100 or 30 nl) were injected into CVLM. Injection of APV or CNQX into CVLM reduced aortic nerve-evoked inhibitory responses of bulbospinal sympathoexcitatory neurons in rostral ventrolateral medulla (RVLM). The extent of this reduction was variable. Usually, significant inhibition was preserved. In seven RVLM neurons, intravenous injection of MK-801 (NMDA receptor antagonist, 2 mg/kg) failed to eliminate aortic nerve-evoked inhibitory responses. However, inhibitory responses were abolished when CNQX was injected into CVLM after intravenous MK-801. We conclude that both NMDA and AMPA/kainate receptors in CVLM transmit baroreceptor information.


1994 ◽  
Vol 664 (1-2) ◽  
pp. 41-48 ◽  
Author(s):  
A. Cudennec ◽  
D. Duverger ◽  
J. Benavides ◽  
B. Scatton ◽  
J.P. Nowicki

2011 ◽  
Vol 29 (7) ◽  
pp. 767-773 ◽  
Author(s):  
Simon M. Manning ◽  
Griffin Boll ◽  
Erin Fitzgerald ◽  
Debra B. Selip ◽  
Joseph J. Volpe ◽  
...  

1993 ◽  
Vol 247 (3) ◽  
pp. 319-324 ◽  
Author(s):  
Helen J. Sherriffs ◽  
Kiyoharu Shirakawa ◽  
John S. Kelly ◽  
Henry J. Olverman ◽  
Atsushi Kuno ◽  
...  

2015 ◽  
Vol 67 (2) ◽  
pp. 741-741
Author(s):  
E Editorial

This is a notice of retraction of the article: Mitochondrial superoxide production and MnSOD activity following exposure to an agonist and antagonists of ionotropic glutamate receptors in rat brain, published in the Archives of Biological Sciences in 2005, Vol. 57, Issue 1. The Editor-in-Chief has been informed that this paper plagiarizes an earlier paper: Radenovic L, Selakovic V, Kartelija G, Todorovic N, Nedeljkovic M. Differential effects of NMDA and AMPA/kainate receptor antagonists on superoxide production and MnSOD activity in rat brain following intrahippocampal injection. Brain Res Bull, 2004, 64(1):85-93. This claim is correct and almost the entire paper is a verbatim copy of the earlier one. After confirmation of this fact, the Editor-in-Chief of the Archives of Biological Sciences has decided to retract the paper immediately. We apologize to the readers of the journal that it took so many years to notice this error and to retract the paper. We request readers of the journal to directly get in touch with the editorial office and the editors of the journal for similar cases in the future, so that they can be handled promptly. <br><br><font color="red"><b> Link to the retracted article <u><a href="http://dx.doi.org/10.2298/ABS0501001R">10.2298/ABS0501001R</a></b></u>


Sign in / Sign up

Export Citation Format

Share Document