scholarly journals Effect of glutamate antagonists on nitric oxide production in rat brain following intrahippocampal injection

2007 ◽  
Vol 59 (1) ◽  
pp. 29-36 ◽  
Author(s):  
Lidija Radenovic ◽  
Vesna Selakovic ◽  
Branka Janac ◽  
Dajana Todorovic

Stimulation of glutamate receptors induces neuronal nitric oxide (NO) release, which in turn modulates glutamate transmission. The involvement of ionotropic glutamate NMDA and AMPA/kainate receptors in induction of NO production in the rat brain was examined after injection of kainate, a non-NMDA receptor agonist; kainate plus 6-cyano- 7-nitroquinoxaline-2,3-dione (CNQX), a selective AMPA/kainate receptor antagonist; or kainate plus 2-amino-5-phosphonopentanoic acid (APV), a selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with kainate unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times (5 min, 15 min, 2 h, 48 h, and 7 days) in hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists APV and CNQX both provided sufficient neuroprotection in the sense of reducing nitrite concentrations, but with different mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in nitric oxide production. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150319031E">10.2298/ABS150319031E</a><u></b></font>

2005 ◽  
Vol 57 (1) ◽  
pp. 1-10
Author(s):  
Lidija Radenovic ◽  
Vesna Selakovic

The involvement of NMDA and AMPA/kainate receptors in the induction of superoxide production in the rat brain was examined after intrahippocampal injection of kainate, a non-NMDA receptor agonist; kainate plus CNQX, a selective AMPA/kainate receptor antagonist; or kainate plus APV, a selective NMDA receptor antagonist. The measurements took place at different times in the ipsi- and contralateral hippocampus, forebrain cortex, striatum, and cerebellum homogenates. The used glutamate antagonists both ensured sufficient neuroprotection in the sense of lowering superoxide production and raising MnSOD levels, but in the mechanisms and time dynamics of their effects were different. Our findings suggest that NMDA and AMPA/kainate receptors are differentially involved in superoxide production. <br><br><font color="red"><b> This article has been retracted. Link to the retraction <u><a href="http://dx.doi.org/10.2298/ABS150318026E">10.2298/ABS150318026E</a><u></b></font>


2015 ◽  
Vol 67 (2) ◽  
pp. 745-745
Author(s):  
E Editorial

This is a notice of retraction of the article: Effect of glutamate antagonists effect on nitric oxide production in rat brain following intrahippocampal injection, published in the Archives of Biological Sciences in 2007, Vol. 59, Issue 1. The Editor-in-Chief has been informed that this paper plagiarizes an earlier paper: Radenovic L, Selakovic V. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res Bull. 2005;67(1-2):133-41. The results presented in the article that is being retracted overlap with the results presented in the original article without appropriate justification, permission or crossreferencing. After confirmation of this fact, the Editor-in-Chief of the Archives of Biological Sciences has decided to retract the paper immediately. We apologize to the readers of the journal that it took so many years to notice this error and to retract the paper. We request readers of the journal to directly get in touch with the editorial office and the editors of the journal for similar cases in the future, so that they can be handled promptly. <br><br><font color="red"><b> Link to the retracted article <u><a href="http://dx.doi.org/10.2298/ABS0701029R">10.2298/ABS0701029R</a></b></u>


2009 ◽  
Vol 2 (4) ◽  
pp. 245-249 ◽  
Author(s):  
Eun-Jin Yang ◽  
Eun-Young Yim ◽  
Gwanpil Song ◽  
Gi-Ok Kim ◽  
Chang-Gu Hyun

Inhibition of nitric oxide production in lipopolysaccharide-activated RAW 264.7 macrophages by Jeju plant extractsNitric oxide (NO) produced in large amounts by inducible nitric oxide synthase (iNOS) is known to be responsible for the vasodilation and hypotension observed during septic shock and inflammation. Thus, inhibitors of iNOS may be useful candidates for the treatment of inflammatory diseases accompanied by the overproduction of NO. In this study, we prepared alcoholic extracts of Jeju plants and screened them for their inhibitory activity against NO production in lipopolysaccharide (LPS)-activated macrophages. Among the 260 kinds of plant extract tested, 122 extracts showed potent inhibitory activity towards NO production by more than 25% at a concentration of 100 μg/mL. Plants such asMalus sieboldii, Vaccinium oldhamii, Corylus hallaisanensis, Carpinus laxiflora, Styrax obassia, andSecurinega suffruticosashowed the most potent inhibition (above 70%) at a concentration of 100 μg/mL. The cytotoxic effects of the plant extracts were determined by colorimetric MTT assays and most plant extracts exhibited only moderate cytotoxicity at 100 μg/mL. Therefore, these plants should be considered promising candidates for the further purification of bioactive compounds and would be useful for the treatment of inflammatory diseases accompanying overproduction of NO.


2002 ◽  
Vol 70 (9) ◽  
pp. 5283-5286 ◽  
Author(s):  
Hiroyuki Tezuka ◽  
Shinjiro Imai ◽  
Setsuko Tsukidate ◽  
Koichiro Fujita

ABSTRACT We investigated the effect of recombinant Dirofilaria immitis polyprotein (rDiAg) on nitric oxide (NO) production by peritoneal macrophages. rDiAg induced NO production by macrophages from wild-type and lipopolysaccharide-hyporesponsive C3H/HeJ, but not CD40−/−, mice. These results suggest that CD40 is involved in rDiAg-driven NO production by murine macrophages.


1997 ◽  
Vol 17 (2) ◽  
pp. 153-160 ◽  
Author(s):  
Anish Bhardwaj ◽  
Frances J. Northington ◽  
Lee J. Martin ◽  
Daniel F. Hanley ◽  
Richard J. Traystman ◽  
...  

We tested the hypothesis that stimulation of metabotropic glutamate receptors (mGluRs) increases nitric oxide (NO) production in the hippocampus in vivo. Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of adult Sprague–Dawley rats under pentobarbital anesthesia. Probes were perfused for 5 h with artificial cerebrospinal fluid (CSF) containing 3 μM [14C]-L-arginine. Recovery of [14C]-L-citrulline in the effluent was used as a marker of NO production. In nine groups of rats, increases in [14C]-L-citrulline recovery were compared between right- and left-sided probes perfused with various combinations of the selective mGluR agonist, trans-(1 S,3 R)-1-amino-1,3-cyclopentanedicarboxylic acid (ACPD); the mGluR antagonist, (±)- α-methyl-4-carboxyphenylglycine (MCPG); the NO synthase inhibitor, N-nitro-L-arginine (LNNA); the ryanodine sensitive calcium-release channel inhibitor dantrolene, the non- N-methyl-D-aspartate (NMDA); receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX); the NMDA receptor antagonist (+)-5-methyl-10,11-dihydro-5 H-dibenzo[ a,d] cyclohepten-5,10-imine (MK-801); and the Na+ channel blocker, tetrodotoxin. Recovery of [14C]-L-citrulline during perfusion with artificial CSF progressively increased to 90 ± 21 fmol/min (± SD) over 5 h. Perfusion in the contralateral hippocampus with 1 m M ACPD augmented [14C]-L-citrulline recovery to 250 ± 81 fmol/min. Perfusion of 1 m M nitroarginine + ACPD inhibited [14C]-L-citrulline recovery compared to that with ACPD alone. Perfusion with 1 m M MCPG + ACPD attenuated ACPD enhanced [14C]-L-citrulline recovery. Perfusion of 1 m M dantrolene + ACPD inhibited the ACPD-evoked increase in [14C]-L-citrulline recovery. Perfusion of 1 m M MCPG or dantrolene without ACPD did not decrease [14C]-L-citrulline recovery as compared to CSF alone. ACPD-enhanced [14C]-L-citrulline recovery was not attenuated by CNQX, MK-801, or tetrodotoxin (TTX). Using an indirect method of assessing NO production in vivo, these data demonstrate that mGluR stimulation enhances NO production in rat hippocampus. Inhibition with dantrolene suggests that calcium-induced calcium release amplifies the inositol triphosphate-mediated calcium signal associated with mGluR stimulation, thereby resulting in augmented calcium-dependent NO production.


Sign in / Sign up

Export Citation Format

Share Document