scholarly journals On duality theory and pseudodifferential techniques for Colombeau algebras: generalized delta functionals, kernels and wave front sets

2006 ◽  
Vol 133 (31) ◽  
pp. 115-136 ◽  
Author(s):  
Claudia Garetto ◽  
G. Hormann

Summarizing basic facts from abstract topological modules over Colombeau generalized complex numbers we discuss duality of Colombeau algebras. In particular, we focus on generalized delta functional and operator kernels as elements of dual spaces. A large class of examples is provided by pseudodifferential operators acting on Colombeau algebras. By a refinement of symbol calculus we review a new characterization of the wave front set for generalized functions with applications to microlocal analysis. AMS Mathematics Subject Classification (2000): 46F30, 46A20, 47G30.

2013 ◽  
Vol 56 (1) ◽  
pp. 1-17
Author(s):  
Keiichi Kato ◽  
Masaharu Kobayashi ◽  
Shingo Ito

Author(s):  
Michel Raibaut

Abstract The concept of wave front set was introduced in 1969–1970 by Sato in the hyperfunctions context [1, 34] and by Hörmander [23] in the $\mathcal C^{\infty }$ context. Howe in [25] used the theory of wave front sets in the study of Lie groups representations. Heifetz in [22] defined a notion of wave front set for distributions in the $p$-adic setting and used it to study some representations of $p$-adic Lie groups. In this article, we work in the $k\mathopen{(\!(} t \mathopen{)\!)}$-setting with $k$ a Characteristic 0 field. In that setting, balls are no longer compact but working in a definable context provides good substitutes for finiteness and compactness properties. We develop a notion of definable distributions in the framework of [13] and [14] for which we define notions of singular support and $\Lambda$-wave front sets (relative to some multiplicative subgroups $\Lambda$ of the valued field) and we investigate their behavior under natural operations like pullback, tensor product, and products of distributions.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
C. Boiti ◽  
D. Jornet ◽  
J. Juan-Huguet

We introduce the wave front setWF*P(u)with respect to the iterates of a hypoelliptic linear partial differential operator with constant coefficients of a classical distributionu∈𝒟′(Ω)in an open set Ω in the setting of ultradifferentiable classes of Braun, Meise, and Taylor. We state a version of the microlocal regularity theorem of Hörmander for this new type of wave front set and give some examples and applications of the former result.


2006 ◽  
Vol 58 (3) ◽  
pp. 369-391 ◽  
Author(s):  
Stevan Pilipović ◽  
Mirjana Vuletić

2020 ◽  
Vol 8 ◽  
Author(s):  
AVRAHAM AIZENBUD ◽  
RAF CLUCKERS

Many phenomena in geometry and analysis can be explained via the theory of $D$ -modules, but this theory explains close to nothing in the non-archimedean case, by the absence of integration by parts. Hence there is a need to look for alternatives. A central example of a notion based on the theory of $D$ -modules is the notion of holonomic distributions. We study two recent alternatives of this notion in the context of distributions on non-archimedean local fields, namely $\mathscr{C}^{\text{exp}}$ -class distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)] by showing that each distribution of the $\mathscr{C}^{\text{exp}}$ -class is WF-holonomic and thus provides a framework of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting because the $\mathscr{C}^{\text{exp}}$ -class contains many natural distributions, in particular, the distributions studied by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math.207(2) (2015), 527–580 (English)]. We show also another stability result of this class, namely, one can regularize distributions without leaving the $\mathscr{C}^{\text{exp}}$ -class. We strengthen a link from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’, Trans. Lond. Math. Soc.5(1) (2018), 97–131] between zero loci and smooth loci for functions and distributions of the $\mathscr{C}^{\text{exp}}$ -class. A key ingredient is a new resolution result for subanalytic functions (by alterations), based on embedded resolution for analytic functions and model theory.


Author(s):  
Christopher D. Sogge

This chapter discusses basic techniques from the theory of stationary phase. After giving an overview of the method of stationary phase, the chapter moves on to a discussion of pseudodifferential operators, by going over the basics from the calculus of pseudodifferential operators and their various microlocal properties, in the process obtaining an equivalent definition of wave front sets, before defining pseudodifferential operators on manifolds and going over some of their properties. The chapter then lays out the propagation of singularities as well as Egorov's theorem, which involves conjugating pseudodifferential operators. Finally, this chapter describes the Friedrichs quantization, and differentiates it from the Kohn-Nirenberg quantization presented earlier in the chapter.


Sign in / Sign up

Export Citation Format

Share Document