scholarly journals New desmid records from two high mountain lakes in Camlıhemşin/Rize (Turkey)

2021 ◽  
Vol 45 (2) ◽  
pp. 273-284
Author(s):  
Bülent Şahin

The benthic algal flora of Avusor Great Lake and Ko?d?z? Great Lake in Rize was investigated on 21 August 2019. A total of 37 desmid taxa belonging to the genera Actinotaenium (2), Closterium (6), Cosmarium (12), Euastrum (4), Micrasterias (3), Penium (1), Staurastrum (8) and Staurodesmus (1) were assessed as new records for Turkey. In this paper, the morphotaxonomy, ecology, and distribution of each species is discussed in detail.

Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2014 ◽  
Vol 73 (3) ◽  
Author(s):  
Renata Trevisan ◽  
Marco Picarella ◽  
Frank B. Dazzo ◽  
Stefano Bona ◽  
Giuseppe Morabito ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 609-611 ◽  
Author(s):  
Joan O. Grimalt ◽  
Pilar Fernandez ◽  
Rosa M. Vilanova

High mountain areas have recently been observed to be polluted by organochlorine compounds (OC) despite their isolation. These persistent pollutants arrive at these remote regions through atmospheric transport. However, the mechanisms involving the accumulation of these compounds from the atmospheric pool to the lacustrine systems still need to be elucidated. These mechanisms must be related to the processes involving the transfer of these pollutant from low to high latitudes[1] as described in the global distillation effect[2].


2016 ◽  
Vol 75 (s1) ◽  
Author(s):  
Jordi Catalan ◽  
John C. Donato Rondón

<p>High mountain lakes are extreme freshwater ecosystems and excellent sentinels of current global change. They are likely among the most comparable ecosystems across the world. The largest contrast occurs between lakes in temperate and tropical areas. The main difference arises from the seasonal patterns of heat exchange and the external loadings (carbon, phosphorus, metals). The consequence is a water column structure based on temperature, in temperate lakes, and oxygen, in tropical lakes. This essential difference implies that, in tropical lakes, one can expect a more sustained productivity throughout the year; a higher nutrient internal loading based on the mineralization of external organic matter; higher nitrification-denitrification potential related to the oxyclines; and a higher metal mobilization due to the permanently reduced bottom layer. Quantifying and linking these and other biogeochemical pathways to particular groups of organisms is in the current agenda of high-mountain limnology. The intrinsic difficulties of the taxonomic study of many of the organisms inhabiting these systems can be now overcome with the use of molecular techniques. These techniques will not only provide a much less ambiguous taxonomic knowledge of the microscopic world, but also will unveil new biogeochemical pathways that are difficult to measure chemically and will solve biogeographical puzzles of the distribution of some macroscopic organism, tracing the relationship with other areas. Daily variability and vertical gradients in the tropics are the main factors of phytoplankton species turnover in tropical lakes; whereas seasonality is the main driver in temperate communities. The study of phytoplankton in high-mountain lakes only makes sense in an integrated view of the microscopic ecosystem. A large part of the plankton biomass is in heterotrophic, and mixotrophic organisms and prokaryotes compete for dissolved resources with eukaryotic autotrophs. In fact, high-mountain lake systems are excellent model ecosystems for applying an investigation linking airshed to sediments functional views. Additionally, the study of the mountain lakes districts as functional metacommunity units may reveal key differences in the distribution of organisms of limited (slow) dispersal. We propose that limnological studies at tropical and temperate high mountain lakes should adhere to a common general paradigm. In which biogeochemical processes are framed by the airshed-to-sediment continuum concept and the biogeographical processes in the functional lake district concept. The solid understanding of the fundamental limnological processes will facilitate stronger contributions to the assessment of the impacts of the on-going global change in remote areas.</p>


2001 ◽  
Vol 33 (4) ◽  
pp. 426 ◽  
Author(s):  
I. Reche ◽  
E. Pulido-Villena ◽  
J. M. Conde-Porcuna ◽  
P. Carrillo

Limnetica ◽  
2019 ◽  
Vol 38 (1) ◽  
pp. 55-65
Author(s):  
Rafael Morales-Baquero ◽  
Carmen Pérez-Martínez ◽  
Eloísa Ramos-Rodríguez ◽  
Pedro Sánchez-Castillo ◽  
Manuel Villar-Argaiz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document