scholarly journals Spectrophotometric determination of quetiapine fumarate in pharmaceuticals and human urine by two charge-transfer complexation reactions

2012 ◽  
Vol 18 (2) ◽  
pp. 263-272 ◽  
Author(s):  
K.B. Vinay ◽  
H.D. Revenasiddappa

Two simple, rapid and accurate spectrophotometric procedures are proposed for the determination of quetiapine fumarate (QTF) in pharmaceuticals and in spiked human urine. The methods are based on charge transfer complexation reactions of free base form of the drug (quetiapine, QTP), as n-electron donor (D), with either p-chloranilic acid (p-CAA) (method A) or 2,3-dichloro-5,6-dicyanoquinone (DDQ) (method B) as ?-acceptors (A). The coloured charge transfer complexes produced exhibit absorption maxima at 520 and 540 nm, in method A and method B, respectively. The experimental conditions such as reagent concentration, reaction solvent and time have been carefully optimized to achieve the maximum sensitivity. Beer?s law is obeyed over the concentration ranges of 8.0 - 160 and 4.0 - 80.0 ?g ml-1, for method A and method B, respectively. The calculated molar absorptivity values are 1.77 ? 103 and 4.59 ? 103 l mol-1cm-1, respectively, for method A and method B. The Sandell sensitivity values, limits of detection (LOD) and quantification (LOQ) have also been reported. The stoichiometry of the reaction in both cases was accomplished adopting the limiting logarithmic method and was found to be 1: 2 (D: A). The accuracy and precision of the methods were evaluated on intra-day and inter-day basis. The proposed methods were successfully applied for the determination of QTF in pharmaceutical formulations and spiked human urine.

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hemavathi Nagaraju Deepakumari ◽  
Hosakere Doddarevanna Revanasiddappa

The aim of study was to develop and validate two simple, sensitive, and extraction-free spectrophotometric methods for the estimation of risperidone in both pure and pharmaceutical preparations. They are based on the charge transfer complexation reactions between risperidone (RSP) as n-electron donor and p-chloranilic acid (p-CA) in method A and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in method B as π-acceptors. In method A, RSP reacts with p-CA in methanol to produce a bright pink-colored chromogen measured at 530 nm whereas, in method B, RSP reacts with DDQ in dichloromethane to form orange-colored complex with a maximum absorption at 460 nm. Beer's law was obeyed in the concentration range of 0–25 and 0–50 μg/mL with molar absorptivity of and L/moL/cm for RSP in methods A and B, respectively. The effects of variables such as reagents, time, and stability of the charge transfer complexes were investigated to optimize the procedures. The proposed methods have been successfully applied to the determination of RSP in pharmaceutical formulations. Results indicate that the methods are accurate, precise, and reproducible (relative standard deviation %).


2008 ◽  
Vol 5 (3) ◽  
pp. 493-498 ◽  
Author(s):  
Marothu Vamsi Krishna ◽  
Dannana Gowri Sankar

In this study, four simple, fast, accurate and sensitive spectrophotometric methods have been developed for the determination of gemifloxacin mesylate in pharmaceutical formulations. The methods are based on the charge transfer complexation reaction of the drug as n-electron donor with sigma (σ)-acceptor iodine, and thepi(π)-acceptors 2, 3-dichloro-5, 6-dicyano-p-benzoquinone (DDQ)-7,7,8,8-tetra cyanoquinodimethane (TCNQ) and tetracyanoethylene (TCNE). The obtained charge transfer complexes were measured at 290nm for iodine (in 1, 2-dichloro ethane), at 470, 840 and 420 nm for DDQ, TCNQ and TCNE (in acetonitrile), respectively. Optimization of different experimental conditions is described. Beer's law is obeyed in the concentration range of 6-30, 2-10, 2.5-12.5 and 1-5 μg mL−1for iodine, DDQ, TCNQ and TCNE methods, respectively. The proposed methods were applied successfully to the determination of GFX in pharmaceutical formulations with good accuracy and precision.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Kudige N. Prashanth ◽  
Basavaiah Kanakapura ◽  
Madihalli S. Raghu ◽  
Kanakapura B. Vinay

Studies were carried out to use the charge-transfer reactions of sumatriptan (SMT), extracted from neutralized sumatriptan succinate (STS), as n-electron donor with the π-acceptor, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and σ-acceptor, and iodine (I2). The formation of the colored complexes was utilized for the development of simple, rapid, and accurate spectrophotometric methods for the determination of SMT in pure form as well as in its tablets. The quantification of colored products was made spectrophotometrically at 585 nm for the CT complex formed between SMT and DDQ (DDQ method) and at 375 nm for the CT complex formed between SMT and I2 (I2 method). Beer’s law is obeyed over the concentration ranges of 4.0–56.0 μg mL−1 and 2.0–28.0 for DDQ and I2, respectively, with correlation coefficients () of 0.9997 and 0.9998. The analytical parameters such as apparent molar absorptivity, Sandell’s sensitivities, and limits of detection (LOD) and quantification (LOQ) are also reported for both methods. The described methods were successfully applied to the determination of SMT in tablets. No interference was observed from the common excipients present in tablets. The reaction stoichiometry in both methods was evaluated by Job’s method of continuous variations and was found to be 1 : 1 (donor : acceptor).


2009 ◽  
Vol 7 (4) ◽  
pp. 870-875 ◽  
Author(s):  
Sayed Zayed

AbstractTwo simple, rapid, accurate and sensitive spectrophotometric methods are described for the determination of sulpiride. They are based on charge transfer complexation between the drug as n-electron donor and p-chloranilic acid as π acceptor or iodine as σ-acceptor. These give highly coloured complexes with absorption maxima at 518 and 363, 294 nm, respectively. Beer’s law linear ranges were 13.7–341.4 and 1.7–20.5 µg mL−1 for the p-chloranilic acid and iodine methods. The methods were successfully applied to the determination of the drug in Dogmatil® Fort tablets and the results compared with the official method. The complex association constants and standard free energy changes were calculated using Benesi-Hildebrand plots.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. B. Vinay ◽  
H. D. Revanasiddappa ◽  
M. S. Raghu ◽  
Sameer. A. M. Abdulrahman ◽  
N. Rajendraprasad

Two simple, selective, and rapid spectrophotometric methods are described for the determination of mycophenolate mofetil (MPM) in pure form and in tablets. Both methods are based on charge-transfer complexation reaction of MPM with p-chloranilic acid (p-CA) or 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in dioxane-acetonitrile medium resulting in coloured product measurable at 520 nm (p-CA) or 580 nm (DDQ). Beer’s law is obeyed over the concentration ranges of 40–400 and 12–120 μg mL−1MPM for p-CA and DDQ, respectively, with correlation coefficients (r) of 0.9995 and 0.9947. The apparent molar absorptivity values are calculated to be1.06×103and3.87×103 L mol−1 cm−1, respectively, and the corresponding Sandell’s sensitivities are 0.4106 and 0.1119 μg cm−1. The limits of detection (LOD) and quantification (LOQ) are also reported for both methods. The described methods were successfully applied to the determination of MPM in tablets. Statistical comparison of the results with those of the reference method showed excellent agreement. No interference was observed from the common excipients present in tablets. Both methods were validated statistically for accuracy and precision. The accuracy and reliability of the methods were further ascertained by recovery studiesviastandard addition procedure.


Sign in / Sign up

Export Citation Format

Share Document