quetiapine fumarate
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 33)

H-INDEX

25
(FIVE YEARS 1)

Author(s):  
Deepak Patil ◽  
Seema Pattewar ◽  
Sarvesh Palival ◽  
Gargi Patil ◽  
Swapnil Sharma

The aim of present study is to investigate the potential of nanostructured lipid carriers (NLCs) in improving the oral bioavailability of quetiapine fumarate, a second-generation antipsychotic drug. Quetiapine Fumarate (QF) loaded NLC were prepared by hot homogenization followed by an ultrasonication method. Response surface methodology - central composite design (CCD) was used to systemically examine the influence of concentration of capmul MCM EP, concentration of poloxamer 188 and concentration of egg lecithin on particle size (PS) and % entrapment efficiency (% EE) and to optimize the NLC formulation. The CCD consists of three factored design with five levels, plus and minus alpha (axial points), plus and minus 1 (factorial points) and the centre point. A mathematical relationship between variables was created by using Design Expert software Version 12. The statistical evaluations revealed that three independent variables were the important factors that affected the PS and % EE of QF loaded NLC. The best fitted mathematical model was linear and quadratic for PS and % EE respectively. The optimized formulations found with 218.1±0.14nm of PS and 93±0.16% of % EE. Results illustrated the superiority of developed QF loaded NLC formulation as a stable drug delivery system, providing better bioavailability with the possibility of better treatment for psychological disorders.


Author(s):  
Nantana Nuchtavorn ◽  
Jiraporn Leanpolchareanchai ◽  
Duangjai Chanton ◽  
Patcharin Supapsophon ◽  
Sumet Chongruchiroj ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1523
Author(s):  
Roberta Ganzetti ◽  
Serena Logrippo ◽  
Matteo Sestili ◽  
Alessandro Caraffa ◽  
Marco Cespi ◽  
...  

Quetiapine is an atypical antipsychotic approved for treating schizophrenia, bipolar depression, and mania but is frequently used in an off-label manner to control the behavioral and psychological symptoms of dementia in elderly patients with dementia. Due to the need to personalize doses for elderly patients with dementia, quetiapine tablet manipulation is widespread in hospital settings, long-term care facilities, and patient homes. The aim of this study was to assess the impact of the different splitting techniques on quetiapine fumarate tablets by analysing the obtained sub-divided tablets and to discuss compliance with the European Pharmacopoeia limits on whole and split tablets. Quetiapine fumarate tablets of two dose strengths were taken at random (in a number able to assure a power of 0.8 during statistical comparison) and were split with a kitchen knife or tablet cutter. The weight and the drug content were determined for each half tablet. The obtained data were compared to the European Pharmacopoeia limits. The differences between the different splitting techniques were statistically tested. Data showed that split tablets, independently of the dose strength and the technique employed, were not compliant with the European Pharmacopoeia specifications for both entire and subdivided tablets in terms of weight and content uniformity. Thus, such a common practice could have potential effects on treatment efficacy and toxicity, especially when also considering the fragility of the elderly target population in which polypharmacotherapy is very common. These results indicate a compelling need for flexible quetiapine formulations that can assure more accurate dose personalization.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4753
Author(s):  
Katerina Ragazou ◽  
Rallis Lougkovois ◽  
Vassiliki Katseli ◽  
Christos Kokkinos

In this work, we developed a novel all-3D-printed device for the simple determination of quetiapine fumarate (QF) via voltammetric mode. The device was printed through a one-step process by a dual-extruder 3D printer and it features three thermoplastic electrodes (printed from a carbon black-loaded polylactic acid (PLA)) and an electrode holder printed from a non-conductive PLA filament. The integrated 3D-printed device can be printed on-field and it qualifies as a ready-to-use sensor, since it does not require any post-treatment (i.e., modification or activation) before use. The electrochemical parameters, which affect the performance of the sensor in QF determination, were optimized and, under the selected conditions, the quantification of QF was carried out in the concentration range of 5 × 10−7–80 × 10−7 mol × L−1. The limit of detection was 2 × 10−9 mol × L−1, which is lower than that of existing electrochemical QF sensors. The within-device and between-device reproducibility was 4.3% and 6.2% (at 50 × 10−7 mol × L−1 QF level), respectively, demonstrating the satisfactory operational and fabrication reproducibility of the device. Finally, the device was successfully applied for the determination of QF in pharmaceutical tablets and in human urine, justifying its suitability for routine and on-site analysis.


2021 ◽  
Vol 11 (3-S) ◽  
pp. 65-73
Author(s):  
Keyur S. Patel ◽  
Akshar N. Rao ◽  
Deepa R. Patel ◽  
Dhaval M. Patel ◽  
Advaita B. Patel

The objective of the present study was to develop gastroretentive floating tablets of quetiapine fumarate. The gastroretentive floating tablets of quetiapine fumarate were formulated using natrosol 250 HHX as a sustained release polymer and sodium bicarbonate as a gas forming agents.  A 32 factorial design was employed to study the influence of concentration of natrosol HHX 250 (X1) and concentration of sodium bicarbonate (X2) on the dependent variables % drug release at 1h (Y1), % drug release at 8 h (Y2) and floating lag time (Y3). The optimized formulation (O1) showed floating lag time 49 ± 3 sec and % drug release 99.54± 0.81 at 12 h. The in vitro release of F1-F9 batches were found in between 99.95 ± 1.18 %  to  86.32 ±1.71 % at 12 h. Floating lag time of F1-F9 batches were found to be 25± 2 sec to 178 ± 3 sec. FTIR studies shown that there was no  interaction between quetiapine fumarate and excipients. From the factorial design batches it was found that floating lag time was decreased with increasing the amount of sodium bicarbonate and decreasing the amount of natrosol 250 HHX. Here % release of drug was decreased with increase the extent of natrosol 250 HHX. The in-vitro release kinetics revealed Korsmeyer-Peppas model is followed and drug release is by anomalous diffusion. Keywords: Quetiapine fumarate, Natrosol 250 HHX, Sodium bicarbonate, Gastroretentive floating tablets


Sign in / Sign up

Export Citation Format

Share Document