scholarly journals Spatio-temporal summarized visualization of smartX multi-view visibility in cloud-native edge boxes

Author(s):  
Muhammad Rathore ◽  
Jongwon Kim

The existing data summarization (and archival) techniques are generic and are not designed to leverage the unique characteristics of the spatio-temporal visualization at multi-resource level. In this paper, we propose and explore a family of data summaries that take advantage of the multiple layers i.e. physical/virtual resources with temporal and spatial correlation among distributed edge boxes. Significant challenges in measuring spatio-temporal data, however, contribute to both a tendency towards identifying efficient metrics with summarizing function alities and effective verification methods. In this paper, we present our idea of maintaining summarized spatio-temporal data and verify through visualization of gathered operational data.

Author(s):  
Soumya Dutta ◽  
Humayra Tasnim ◽  
Terece L. Turton ◽  
James Ahrens

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Lianren Wu ◽  
Jinjie Li ◽  
Jiayin Qi

AbstractIn this paper, a quantitative temporal and spatial analysis of the dynamics of hot topics popularity in Micro-blogging system was provided. Firstly, the popularity time series of 1167 hot topics were counted and calculated by Excel. Secondly, based on MATLAB software,the popularity time series were clustered into six clusters by K-spectral centroid (K-SC) clustering algorithm. Thirdly, we analyzed temporal patterns and spatial patterns of popularity dynamics of topics by statistical methods. The results show that temporal popularity of micro-blogging topics is rapidly dying, and the distribution of popularity is subject to the power law form. In addition, most of the Micro-blogging topics are global topic. Our results can provide a literature reference for studying the influence of online hot topics and the evolution of public opinion.


2010 ◽  
Vol 27 (1-2) ◽  
pp. 81-90
Author(s):  
Krishna Poudel

Mountains have distinct geography and are dynamic in nature compared to the plains. 'Verticality' and 'variation' are two fundamental specificities of the mountain geography. They possess distinct temporal and spatial characteristics in a unique socio-cultural setting. There is an ever increasing need for spatial and temporal data for planning and management activities; and Geo Information (GI) Science (including Geographic Information and Earth Observation Systems). This is being recognized more and more as a common platform for integrating spatial data with social, economic and environmental data and information from different sources. This paper investigates the applicability and challenges of GISscience in the context of mountain geography with ample evidences and observations from the mountain specific publications, empirical research findings and reports. The contextual explanation of mountain geography, mountain specific problems, scientific concerns about the mountain geography, advances in GIScience, the role of GIScience for sustainable development, challenges on application of GIScience in the contexts of mountains are the points of discussion. Finally, conclusion has been made with some specific action oriented recommendations.


2019 ◽  
Vol 942 (12) ◽  
pp. 22-28
Author(s):  
A.V. Materuhin ◽  
V.V. Shakhov ◽  
O.D. Sokolova

Optimization of energy consumption in geosensor networks is a very important factor in ensuring stability, since geosensors used for environmental monitoring have limited possibilities for recharging batteries. The article is a concise presentation of the research results in the area of increasing the energy consumption efficiency for the process of collecting spatio-temporal data with wireless geosensor networks. It is shown that in the currently used configurations of geosensor networks there is a predominant direction of the transmitted traffic, which leads to the fact that through the routing nodes that are close to the sinks, a much more traffic passes than through other network nodes. Thus, an imbalance of energy consumption arises in the network, which leads to a decrease in the autonomous operation time of the entire wireless geosensor networks. It is proposed to use the possible mobility of sinks as an optimization resource. A mathematical model for the analysis of the lifetime of a wireless geosensor network using mobile sinks is proposed. The model is analyzed from the point of view of optimization energy consumption by sensors. The proposed approach allows increasing the lifetime of wireless geosensor networks by optimizing the relocation of mobile sinks.


Author(s):  
Didier A. Vega-Oliveros ◽  
Moshé Cotacallapa ◽  
Leonardo N. Ferreira ◽  
Marcos G. Quiles ◽  
Liang Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document