scholarly journals An accelerated Jacobi-gradient based iterative algorithm for solving sylvester matrix equations

Filomat ◽  
2017 ◽  
Vol 31 (8) ◽  
pp. 2381-2390 ◽  
Author(s):  
Zhaolu Tian ◽  
Maoyi Tian ◽  
Chuanqing Gu ◽  
Xiaoning Hao

In this paper, an accelerated Jacobi-gradient based iterative (AJGI) algorithm for solving Sylvester matrix equations is presented, which is based on the algorithms proposed by Ding and Chen [6], Niu et al. [18] and Xie et al. [25]. Theoretical analysis shows that the new algorithm will converge to the true solution for any initial value under certain assumptions. Finally, three numerical examples are given to verify the eficiency of the accelerated algorithm proposed in this paper.

2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Feng Yin ◽  
Guang-Xin Huang

An iterative algorithm is constructed to solve the generalized coupled Sylvester matrix equations(AXB-CYD,EXF-GYH)=(M,N), which includes Sylvester and Lyapunov matrix equations as special cases, over generalized reflexive matricesXandY. When the matrix equations are consistent, for any initial generalized reflexive matrix pair[X1,Y1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solutions can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair[X̂,Ŷ]to a given matrix pair[X0,Y0]in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair[X̃*,Ỹ*]of a new corresponding generalized coupled Sylvester matrix equation pair(AX̃B-CỸD,EX̃F-GỸH)=(M̃,Ñ), whereM̃=M-AX0B+CY0D,Ñ=N-EX0F+GY0H. Several numerical examples are given to show the effectiveness of the presented iterative algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Ehab A. El-Sayed ◽  
Eid E. El Behady

This paper considers a new method to solve the first-order and second-order nonhomogeneous generalized Sylvester matrix equations AV+BW= EVF+R and MVF2+DV F+KV=BW+R, respectively, where A,E,M,D,K,B, and F are the arbitrary real known matrices and V and W are the matrices to be determined. An explicit solution for these equations is proposed, based on the orthogonal reduction of the matrix F to an upper Hessenberg form H. The technique is very simple and does not require the eigenvalues of matrix F to be known. The proposed method is illustrated by numerical examples.


Sign in / Sign up

Export Citation Format

Share Document