optimal approximation
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 43)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ruo-Peng Zheng ◽  
Shu-Bin Liu ◽  
Lei Li

Due to the limitation of numerical aperture (NA) in a microscope, it is very difficult to obtain a clear image of the specimen with a large depth of field (DOF). We propose a deep learning network model to simultaneously improve the imaging resolution and DOF of optical microscopes. The proposed M-Deblurgan consists of three parts: (i) a deblurring module equipped with an encoder-decoder network for feature extraction, (ii) an optimal approximation module to reduce the error propagation between the two tasks, and (iii) an SR module to super-resolve the image from the output of the optimal approximation module. The experimental results show that the proposed network model reaches the optimal result. The peak signal-to-noise ratio (PSNR) of the method can reach 37.5326, and the structural similarity (SSIM) can reach 0.9551 in the experimental dataset. The method can also be used in other potential applications, such as microscopes, mobile cameras, and telescopes.


2021 ◽  
Author(s):  
Eric Balkanski ◽  
Aviad Rubinstein ◽  
Yaron Singer

An Exponentially Faster Algorithm for Submodular Maximization Under a Matroid Constraint This paper studies the problem of submodular maximization under a matroid constraint. It is known since the 1970s that the greedy algorithm obtains a constant-factor approximation guarantee for this problem. Twelve years ago, a breakthrough result by Vondrák obtained the optimal 1 − 1/e approximation. Previous algorithms for this fundamental problem all have linear parallel runtime, which was considered impossible to accelerate until recently. The main contribution of this paper is a novel algorithm that provides an exponential speedup in the parallel runtime of submodular maximization under a matroid constraint, without loss in the approximation guarantee.


2021 ◽  
Vol 40 ◽  
pp. 1-21
Author(s):  
A. Rahouti ◽  
Abdelhafid Serghini ◽  
A. Tijini

In this paper, we use the finite element method to construct a new normalized basis of a univariate quadratic $C^1$ spline space. We give a new representation of Hermite interpolant of any piecewise polynomial of class at least $C^1$ in terms of its polar form. We use this representation for constructing several superconvergent and super-superconvergent discrete quasi-interpolants which have an optimal approximation order. This approach is simple and provides an interesting approximation. Numerical results are given to illustrate the theoretical ones.


Author(s):  
Yaron Fairstein ◽  
Ariel Kulik ◽  
Joseph (Seffi) Naor ◽  
Danny Raz ◽  
Hadas Shachnai

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1063
Author(s):  
Brendan K. Beare

A function which transforms a continuous random variable such that it has a specified distribution is called a replicating function. We suppose that functions may be assigned a price, and study an optimization problem in which the cheapest approximation to a replicating function is sought. Under suitable regularity conditions, including a bound on the entropy of the set of candidate approximations, we show that the optimal approximation comes close to achieving distributional replication, and close to achieving the minimum cost among replicating functions. We discuss the relevance of our results to the financial literature on hedge fund replication; in this case, the optimal approximation corresponds to the cheapest portfolio of market index options which delivers the hedge fund return distribution.


Author(s):  
Hadi Hosseini ◽  
Andrew Searns

The maximin share (MMS) guarantee is a desirable fairness notion for allocating indivisible goods. While MMS allocations do not always exist, several approximation techniques have been developed to ensure that all agents receive a fraction of their maximin share. We focus on an alternative approximation notion, based on the population of agents, that seeks to guarantee MMS for a fraction of agents. We show that no optimal approximation algorithm can satisfy more than a constant number of agents, and discuss the existence and computation of MMS for all but one agent and its relation to approximate MMS guarantees. We then prove the existence of allocations that guarantee MMS for 2/3 of agents, and devise a polynomial time algorithm that achieves this bound for up to nine agents. A key implication of our result is the existence of allocations that guarantee the value that an agent receives by partitioning the goods into 3n/2 bundles, improving the best known guarantee when goods are partitioned into 2n-2 bundles. Finally, we provide empirical experiments using synthetic data.


2021 ◽  
Vol 47 (3) ◽  
Author(s):  
Mario Kapl ◽  
Vito Vitrih

AbstractThe design of globally Cs-smooth (s ≥ 1) isogeometric spline spaces over multi-patch geometries with possibly extraordinary vertices, i.e. vertices with valencies different from four, is a current and challenging topic of research in the framework of isogeometric analysis. In this work, we extend the recent methods Kapl et al. Comput. Aided Geom. Des. 52–53:75–89, 2017, Kapl et al. Comput. Aided Geom. Des. 69:55–75, 2019 and Kapl and Vitrih J. Comput. Appl. Math. 335:289–311, 2018, Kapl and Vitrih J. Comput. Appl. Math. 358:385–404, 2019 and Kapl and Vitrih Comput. Methods Appl. Mech. Engrg. 360:112684, 2020 for the construction of C1-smooth and C2-smooth isogeometric spline spaces over particular planar multi-patch geometries to the case of Cs-smooth isogeometric multi-patch spline spaces of degree p, inner regularity r and of a smoothness s ≥ 1, with p ≥ 2s + 1 and s ≤ r ≤ p − s − 1. More precisely, we study for s ≥ 1 the space of Cs-smooth isogeometric spline functions defined on planar, bilinearly parameterized multi-patch domains, and generate a particular Cs-smooth subspace of the entire Cs-smooth isogeometric multi-patch spline space. We further present the construction of a basis for this Cs-smooth subspace, which consists of simple and locally supported functions. Moreover, we use the Cs-smooth spline functions to perform L2 approximation on bilinearly parameterized multi-patch domains, where the obtained numerical results indicate an optimal approximation power of the constructed Cs-smooth subspace.


Sign in / Sign up

Export Citation Format

Share Document