scholarly journals The multiple composition of the left and right fractional Riemann-Liouville integrals - analytical and numerical calculations

Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6087-6099 ◽  
Author(s):  
Mariusz Ciesielski ◽  
Tomasz Blaszczyk

New fractional integral operators of order ? ? R+ are introduced. These operators are defined as the composition of the left and right (or the right and left) Riemann-Liouville fractional order integrals. Some of their properties are studied. Analytical results of fractional integrals of several functions are presented. For a numerical calculation of fractional order integrals, two numerical procedures are given. In the final part of this paper, examples of numerical evaluations of these operators of three different functions are shown in plots and the comparison of the numerical accuracy was analyzed in tables.

2021 ◽  
Vol 5 (4) ◽  
pp. 253
Author(s):  
Ghulam Farid ◽  
Muhammad Yussouf ◽  
Kamsing Nonlaopon

Integral operators of a fractional order containing the Mittag-Leffler function are important generalizations of classical Riemann–Liouville integrals. The inequalities that are extensively studied for fractional integral operators are the Hadamard type inequalities. The aim of this paper is to find new versions of the Fejér–Hadamard (weighted version of the Hadamard inequality) type inequalities for (α, h-m)-p-convex functions via extended generalized fractional integrals containing Mittag-Leffler functions. These inequalities hold simultaneously for different types of well-known convexities as well as for different kinds of fractional integrals. Hence, the presented results provide more generalized forms of the Hadamard type inequalities as compared to the inequalities that already exist in the literature.


2021 ◽  
Vol 6 (10) ◽  
pp. 11167-11186
Author(s):  
Hari M. Srivastava ◽  
◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Abdullah M. Alsharif ◽  
...  

<abstract><p>The main goal of this article is first to introduce a new generalization of the fractional integral operators with a certain modified Mittag-Leffler kernel and then investigate the Chebyshev inequality via this general family of fractional integral operators. We improve our results and we investigate the Chebyshev inequality for more than two functions. We also derive some inequalities of this type for functions whose derivatives are bounded above and bounded below. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. Finally, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view.</p></abstract>


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 204
Author(s):  
Muhammad Bilal Khan ◽  
Hatim Ghazi Zaini ◽  
Savin Treanțǎ ◽  
Mohamed S. Soliman ◽  
Kamsing Nonlaopon

The concepts of convex and non-convex functions play a key role in the study of optimization. So, with the help of these ideas, some inequalities can also be established. Moreover, the principles of convexity and symmetry are inextricably linked. In the last two years, convexity and symmetry have emerged as a new field due to considerable association. In this paper, we study a new version of interval-valued functions (I-V·Fs), known as left and right χ-pre-invex interval-valued functions (LR-χ-pre-invex I-V·Fs). For this class of non-convex I-V·Fs, we derive numerous new dynamic inequalities interval Riemann–Liouville fractional integral operators. The applications of these repercussions are taken into account in a unique way. In addition, instructive instances are provided to aid our conclusions. Meanwhile, we’ll discuss a few specific examples that may be extrapolated from our primary findings.


1989 ◽  
Vol 112 (3-4) ◽  
pp. 237-247 ◽  
Author(s):  
S. E. Schiavone

SynopsisIn this paper, a theory of fractional powers of operators due to Balakrishnan, which is valid for certain operators on Banach spaces, is extended to Fréchet spaces. The resultingtheory is shown to be more general than that developed in an earlier approach by Lamb, and is applied to obtain mapping properties of certain Riesz fractional integral operators on spaces of test functions.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Gauhar Rahman ◽  
Thabet Abdeljawad ◽  
Fahd Jarad ◽  
Aftab Khan ◽  
Kottakkaran Sooppy Nisar

Abstract In the article, we introduce the generalized proportional Hadamard fractional integrals and establish several inequalities for convex functions in the framework of the defined class of fractional integrals. The given results are generalizations of some known results.


2020 ◽  
Vol 2020 ◽  
pp. 1-25 ◽  
Author(s):  
Hua Wang

In this paper, we first introduce some new classes of weighted amalgam spaces. Then, we give the weighted strong-type and weak-type estimates for fractional integral operators Iγ on these new function spaces. Furthermore, the weighted strong-type estimate and endpoint estimate of linear commutators b,Iγ generated by b and Iγ are established as well. In addition, we are going to study related problems about two-weight, weak-type inequalities for Iγ and b,Iγ on the weighted amalgam spaces and give some results. Based on these results and pointwise domination, we can prove norm inequalities involving fractional maximal operator Mγ and generalized fractional integrals ℒ−γ/2 in the context of weighted amalgam spaces, where 0<γ<n and L is the infinitesimal generator of an analytic semigroup on L2Rn with Gaussian kernel bounds.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 896 ◽  
Author(s):  
Aditya Mani Mishra ◽  
Dumitru Baleanu ◽  
Fairouz Tchier ◽  
Sunil Dutt Purohit

An analogous version of Chebyshev inequality, associated with the weighted function, has been established using the pathway fractional integral operators. The result is a generalization of the Chebyshev inequality in fractional integral operators. We deduce the left sided Riemann Liouville version and the Laplace version of the same identity. Our main deduction will provide noted results for an appropriate change to the Pathway fractional integral parameter and the degree of the fractional operator.


2016 ◽  
Vol 14 (1) ◽  
pp. 89-99 ◽  
Author(s):  
Dumitru Baleanu ◽  
Sunil Dutt Purohit ◽  
Jyotindra C. Prajapati

AbstractUsing the generalized Erdélyi-Kober fractional integrals, an attempt is made to establish certain new fractional integral inequalities, related to the weighted version of the Chebyshev functional. The results given earlier by Purohit and Raina (2013) and Dahmani et al. (2011) are special cases of results obtained in present paper.


2021 ◽  
Vol 5 (4) ◽  
pp. 160
Author(s):  
Hari Mohan Srivastava ◽  
Artion Kashuri ◽  
Pshtiwan Othman Mohammed ◽  
Kamsing Nonlaopon

In this paper, we introduce the generalized left-side and right-side fractional integral operators with a certain modified ML kernel. We investigate the Chebyshev inequality via this general family of fractional integral operators. Moreover, we derive new results of this type of inequalities for finite products of functions. In addition, we establish an estimate for the Chebyshev functional by using the new fractional integral operators. From our above-mentioned results, we find similar inequalities for some specialized fractional integrals keeping some of the earlier results in view. Furthermore, two important results and some interesting consequences for convex functions in the framework of the defined class of generalized fractional integral operators are established. Finally, two basic examples demonstrated the significance of our results.


2021 ◽  
Vol 6 (10) ◽  
pp. 11403-11424
Author(s):  
Ghulam Farid ◽  
◽  
Hafsa Yasmeen ◽  
Hijaz Ahmad ◽  
Chahn Yong Jung ◽  
...  

<abstract><p>In this paper Hadamard type inequalities for strongly $ (\alpha, m) $-convex functions via generalized Riemann-Liouville fractional integrals are studied. These inequalities provide generalizations as well as refinements of several well known inequalities. The established results are further connected with fractional integral inequalities for Riemann-Liouville fractional integrals of convex, strongly convex and strongly $ m $-convex functions. By using two fractional integral identities some more Hadamard type inequalities are proved.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document