scholarly journals On the rates of convergence to symmetric stable laws for distributions of normalized geometric random sums

Filomat ◽  
2019 ◽  
Vol 33 (10) ◽  
pp. 3073-3084
Author(s):  
Tran Hung ◽  
Phan Kien

Let X1,X2,... be a sequence of independent, identically distributed random variables. Let ?p be a geometric random variable with parameter p?(0,1), independent of all Xj, j ? 1: Assume that ? : N ? R+ is a positive normalized function such that ?(n) = o(1) when n ? +?. The paper deals with the rate of convergence for distributions of randomly normalized geometric random sums ?(?p) ??p,j=1 Xj to symmetric stable laws in term of Zolotarev?s probability metric.

2010 ◽  
Vol 51 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In this paper, we present the rate of convergence of normal approximation and the theorem on large deviations for a compound process Zt = \sumNt i=1 t aiXi, where Z0 = 0 and ai > 0, of weighted independent identically distributed random variables Xi, i = 1, 2, . . . with  mean EXi = µ and variance DXi = σ2 > 0. It is assumed that Nt is a non-negative integervalued random variable, which depends on t > 0 and is independent of Xi, i = 1, 2, . . . .


2013 ◽  
Vol 18 (2) ◽  
pp. 129-142 ◽  
Author(s):  
Aurelija Kasparavičiūtė ◽  
Leonas Saulis

In the present paper we consider weighted random sums ZN = ∑j=1NajXj, where 0 ≤ aj < ∞, N denotes a non-negative integer-valued random variable, and {X, Xj , j = 1, 2,...} is a family of independent identically distributed random variables with mean EX = µ and variance DX = σ2 > 0. Throughout this paper N is independent of {X, Xj , j = 1, 2,...} and, for definiteness, it is assumed Z0 = 0. The main idea of the paper is to present results on theorems of large deviations both in the Cramér and power Linnik zones for a sum ~ZN = (ZN − EZN )(DZN )−1/2 , exponential inequalities for a tail probability P(~ZN > x) in two cases: µ = 0 and µ ≠ 0 pointing out the difference between them. Only normal approximation is considered. It should be noted that large deviations when µ ≠ 0 have been already considered in our papers [1,2].


2021 ◽  
Vol 73 (1) ◽  
pp. 62-67
Author(s):  
Ibrahim A. Ahmad ◽  
A. R. Mugdadi

For a sequence of independent, identically distributed random variable (iid rv's) [Formula: see text] and a sequence of integer-valued random variables [Formula: see text], define the random quantiles as [Formula: see text], where [Formula: see text] denote the largest integer less than or equal to [Formula: see text], and [Formula: see text] the [Formula: see text]th order statistic in a sample [Formula: see text] and [Formula: see text]. In this note, the limiting distribution and its exact order approximation are obtained for [Formula: see text]. The limiting distribution result we obtain extends the work of several including Wretman[Formula: see text]. The exact order of normal approximation generalizes the fixed sample size results of Reiss[Formula: see text]. AMS 2000 subject classification: 60F12; 60F05; 62G30.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


2020 ◽  
Vol 22 (4) ◽  
pp. 415-421
Author(s):  
Tran Loc Hung ◽  
Phan Tri Kien ◽  
Nguyen Tan Nhut

The negative-binomial sum is an extension of a geometric sum. It has been arisen from the necessity to resolve practical problems in telecommunications, network analysis, stochastic finance and insurance mathematics, etc. Up to the present, the topics related to negative-binomial sums like asymptotic distributions and rates of convergence have been investigated by many mathematicians. However, in a lot of various situations, the results concerned the rates of convergence for negative-binomial sums are still restrictive. The main purpose of this paper is to establish some weak limit theorems for negative-binomial sums of independent, identically distributed (i.i.d.) random variables via Gnedenko's Transfer Theorem originated by Gnedenko and Fahim (1969). Using Zolotarev's probability metric, the rate of convergence in weak limit theorems for negativebinomial sum are established. The received results are the rates of convergence in weak limit theorem for partial sum of i.i.d random variables related to symmetric stable distribution (Theorem 1), and asymptotic distribution together with the convergence rates for negative-binomial sums of i.i.d. random variables concerning to symmetric Linnik laws and Generalized Linnik distribution (Theorem 2 and Theorem 3). Based on the results of this paper, the analogous results for geometric sums of i.i.d. random variables will be concluded as direct consequences. However, the article has just been solved for the case of 1 <a < 2; it is quite hard to estimate in the case of a 2 (0;1) via the Zolotarev's probability metric. Mathematics Subject Classification 2010: 60G50; 60F05; 60E07.


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


1996 ◽  
Vol 28 (2) ◽  
pp. 463-480 ◽  
Author(s):  
Charles M. Goldie ◽  
Rudolf Grübel

We investigate the behaviour of P(R ≧ r) and P(R ≦ −r) as r → ∞for the random variable where is an independent, identically distributed sequence with P(− 1 ≦ M ≦ 1) = 1. Random variables of this type appear in insurance mathematics, as solutions of stochastic difference equations, in the analysis of probabilistic algorithms and elsewhere. Exponential and Poissonian tail behaviour can arise.


2009 ◽  
Vol 50 ◽  
Author(s):  
Jonas Kazys Sunklodas

In the paper, we present the upper bound of Lp norm \deltaλ,p of the order λ-δ/2 for all 1 \leq  p \leq ∞,  in the central limit theorem for a standardized random sum (SNλ - ESNλ)/DSNλ , where SNλ = X1 + ··· + XNλ is the random sum of independent identically distributed random variables X, X1, X2, . . . with  β2+δ = E|X|2+δ < ∞ where 0 < δ \leq 1, Nλ is a random variable distributed by the Poisson distribution with the parameter λ > 0, and Nλ is independent of X1, X2, . . ..


Sign in / Sign up

Export Citation Format

Share Document