scholarly journals The natural operators similar to the twisted courant bracket on couples of vector fields and p-forms

Filomat ◽  
2020 ◽  
Vol 34 (12) ◽  
pp. 4071-4078
Author(s):  
Włodzimierz Mikulski

Given natural numbers m and p with m ? p + 2 ? 3, all Mfm-natural operators A sending closed (p+2)-forms H on m-manifolds M into R-bilinear operators AH transforming pairs of couples of vector fields and p-forms on M into couples of vector fields and p-forms on M are found. If m ? p + 2 ? 3, all Mfm-natural operators A (as above) such that AH satisfies the Jacobi identity in Leibniz form are extracted, and that the twisted Courant bracket [-,-]H is the unique Mfm-natural operator AH (as above) satisfying the Jacobi identity in Leibniz form and some normalization condition is deduced.

2020 ◽  
Vol 40 (6) ◽  
pp. 703-723
Author(s):  
Włodzimierz M. Mikulski

There are completely described all \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) which, like to the Dorfman-Courant bracket, send closed linear \(3\)-forms \(H\in\Gamma^{l-\rm{clos}}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^{\infty}\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE\oplus T^*E)\times \Gamma^l_E(TE\oplus T^*E)\to \Gamma^l_E(TE\oplus T^*E)\] transforming pairs of linear sections of \(TE\oplus T^*E\to E\) into linear sections of \(TE\oplus T^*E\to E\). Then all such \(C\) which also, like to the twisted Dorfman-Courant bracket, satisfy both some "restricted" condition and the Jacobi identity in Leibniz form are extracted.


2021 ◽  
Vol 41 (2) ◽  
pp. 205-226
Author(s):  
Włodzimierz M. Mikulski

All \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(TE \oplus T^*E)\] transforming pairs of linear sections of \(TE \oplus T^*E \to E\) into linear sections of \( TE \oplus T^*E \to E\) are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets \(C\) (i.e. \(C\) as above such that \(C_0\) is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear \(3\)-forms \(H\). An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.


Author(s):  
Miroslav Doupovec ◽  
Jan Kurek ◽  
Włodzimierz Mikulski

If \(m\geq p+1\geq 2\) (or \(m=p\geq 3\)), all  natural bilinear  operators \(A\) transforming pairs of couples of vector fields and \(p\)-forms on \(m\)-manifolds \(M\) into couples of vector fields and \(p\)-forms on \(M\) are described. It is observed that  any natural skew-symmetric bilinear operator \(A\) as above coincides with the generalized Courant bracket up to three (two, respectively) real constants.


2003 ◽  
Vol 36 (1) ◽  
Author(s):  
Włodzimierz M. Mikulski

2017 ◽  
Vol 14 (11) ◽  
pp. 1750160 ◽  
Author(s):  
Viktor Abramov

Given a matrix Lie algebra one can construct the 3-Lie algebra by means of the trace of a matrix. In the present paper, we show that this approach can be extended to the infinite-dimensional Lie algebra of vector fields on a manifold if instead of the trace of a matrix we consider a differential 1-form which satisfies certain conditions. Then we show that the same approach can be extended to matrix Lie superalgebras [Formula: see text] if instead of the trace of a matrix we make use of the supertrace of a matrix. It is proved that a graded triple commutator of matrices constructed with the help of the graded commutator and the supertrace satisfies a graded ternary Filippov–Jacobi identity. In two particular cases of [Formula: see text] and [Formula: see text], we show that the Pauli and Dirac matrices generate the matrix 3-Lie superalgebras, and we find the non-trivial graded triple commutators of these algebras. We propose a Clifford algebra approach to 3-Lie superalgebras induced by Lie superalgebras. We also discuss an application of matrix 3-Lie superalgebras in BRST-formalism.


1994 ◽  
Vol 03 (01) ◽  
pp. 139-144 ◽  
Author(s):  
G. BARNICH ◽  
M. HENNEAUX ◽  
R. TATAR

Recent results on the cohomological reformulation of the problem of consistent interactions between gauge fields are illustrated in the case of the Yang-Mills models. By evaluating the local BRST cohomology through descent equation techniques, it is shown (i) that there is a unique local, Poincaré invariant cubic vertex for free gauge vector fields which preserves the number of gauge symmetries to first order in the coupling constant; and (ii) that consistency to second order in the coupling constant requires the structure constants appearing in the cubic vertex to fulfill the Jacobi identity. The known uniqueness of the Yang-Mills coupling is therefore rederived through cohomological arguments.


Sign in / Sign up

Export Citation Format

Share Document