scholarly journals Antifungal activity of polycyclic aromatic hydrocarbons against Ligninolytic fungi

2011 ◽  
Vol 65 (5) ◽  
pp. 575-581 ◽  
Author(s):  
Mustafa Memic ◽  
Alisa Selovic ◽  
Jasmina Sulejmanovic

Environmental contamination by polycyclic aromatic hydrocarbons (PAHs) has caused increasing concern because of their known, or suspected, carcinogenic and mutagenic effects. Polycyclic aromatic hydrocarbons occurring in the environment are usually the result of the incomplete combustion of carbon containing materials. The main sources of severe PAHs contamination in soil come from fossil fuels, i.e. production or use of fossil fuels or their products, such as coal tar and creosote. Creosote is used as a wood preservation for railway ties, bridge timbers, pilling and large-sized lumber. It consists mainly of PAHs, phenol and cresol compounds that cause harmful health effects. Research on biodegradation has shown that a special group of microorganisms, the white-rot fungi and brown-rot fungi, has a remarkable potential to degrade PAHs. This paper presents a study of the antifungal activity of 12 selected PAHs against two ligninolytic fungi Hypoxylon fragiforme (white rot) and Coniophora puteana (brown rot). The antifungal activity of PAHs was determined by the disc-diffusion method by measuring the diameter of the zone of inhibition. The results showed that the antifungal activity of the tested PAHs (concentration of 2.5 mmol/L) depends on the their properties such as molar mass, solubility in water, values of log Kow, ionization potential and Henry?s Law constant as well as number of aromatic rings, molecule topology or pattern of ring linkage. Among the 12 investigated PAHs, benzo(k) fluoranthene with five rings, and pyrene with four cyclic condensed benzene rings showed the highest antifungal activity.

2009 ◽  
Vol 8 (21) ◽  
pp. 5897-5900 ◽  
Author(s):  
Punnapayak Hunsa ◽  
Prasongsuk Sehanat ◽  
Messner Kurt ◽  
Danmek Khanchai ◽  
Lotrakul Pongtharin

Author(s):  
Marek Łukasz Roszko ◽  
Karolina Juszczyk ◽  
Magdalena Szczepańska ◽  
Olga Świder ◽  
Krystyna Szymczyk

AbstractBoth polycyclic aromatic hydrocarbons (PAHs) and legacy organochlorine insecticides (OCPs), including DDT, are dangerous chemical contaminants. The aims of this study were to (i) determine background levels of PAHs and legacy OCPs for wheat samples collected in 2017 and 2018 in Poland, (ii) identify differences between levels in wheat harvested in various regions of Poland, (iii) evaluate differences in contamination sources manifested by the profiles of the identified chemicals, (iv) identify possible correlations between different classes of chemicals present in wheat, and (v) assess the health risks associated with the presence of PAHs and OCPs in Polish wheat. Average concentrations found in the samples were 0.09 ± 0.03 μg kg−1 for benzo[a]pyrene (BaP) (formerly used as a single PAH marker), 0.43 ± 0.16 for the more recently introduced collective PAH 4 marker (benzo[a]anthracene + benzo[a]pyrene + chrysene + benzo[b]fluoranthene), and 1.07 ± 0.68 μg kg−1 for DDT and its metabolites. The PAH profiles indicated contamination from combustion-related emission sources (liquid fossil fuels, coal, biomass). Health risks associated with the presence of PAHs and OCPs in cereals were assessed using the margin of exposure (MOE) approach. The MOE values calculated based on the highest concentrations found in this study exceeded 50,000 for both BaP and PAH 4. The calculated worst-case scenario value for DDT and metabolites was as low as 0.3% of the respective tolerable daily intake (TDI) value. Assessment of dietary risk has shown that the presence of the two contaminant classes in Polish wheat grains is of low concern.


Sign in / Sign up

Export Citation Format

Share Document