scholarly journals Thermodynamic modeling of the Sc-Zn system coupled with first-principles calculation

2012 ◽  
Vol 48 (1) ◽  
pp. 123-130 ◽  
Author(s):  
C. Tang ◽  
P. Zhou ◽  
D.D. Zhao ◽  
X.M. Yuan ◽  
Y. Tang ◽  
...  

The Sc-Zn system has been critically reviewed and assessed by means of CALPHAD (CALculation of PHAse Diagram) approach. By means of first-principles calculation, the enthalpies of formation at 0 K for the ScZn, ScZn2, Sc17Zn58, Sc3Zn17 and ScZn12 have been computed with the desire to assist thermodynamic modeling. A set of self-consistent thermodynamic parameters for the Sc-Zn system is then obtained. The calculated phase diagram and thermodynamic properties agree well with the experimental data and first-principles calculations, respectively.

2018 ◽  
Vol 54 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Z. Hu ◽  
C. Huang ◽  
J. Tu ◽  
Y. Huang ◽  
A. Dong

Based on an assessment of the phase equilibria and thermodynamic data in the literature, the thermodynamic modeling of the In?Sc and In?Y systems was carried out by means of the calculation of phase diagram (CALPHAD) method supported by first-principles calculations. The solution phases, i.e., liquid, (In), (?Sc), (?Sc), (?Y) and (?Y), were modeled with the substitutional regular solution model. Ten intermetallic compounds, including InSc3, InSc2, In4Sc5, InSc, In2Sc, In3Sc, InY2, InY, In5Y3, and In3Y were described as stoichiometric phases, while In3Y5 was modeled with a sublattice model with respect to its homogeneity range. The enthalpies of formation of the intermetallic compounds at 0 K were computed using firstprinciple calculations and were used as input for the thermodynamic optimization. A set of self-consistent thermodynamic parameters for both the In?Sc and In?Y systems were obtained and the calculated phase diagrams are in good agreement with the experimental data.


2012 ◽  
Vol 48 (2) ◽  
pp. 273-282 ◽  
Author(s):  
D. Hao ◽  
M. Bu ◽  
Y. Wang ◽  
Y. Tang ◽  
Q. Gao ◽  
...  

The Na-X (X = Si, Ag, Cu, Cr) systems have been critically reviewed and modeled by means of the CALPHAD approach. The two compounds, NaSi and Ag2Na, are treated as stoichiometric ones. By means of first-principles calculations, the enthalpies of formation at 0 K for the LT-NaSi (low temperature form of NaSi) and Ag2Na have been computed to be -5210 and -29821.8 Jmol-1, respectively, with the desire to assist thermodynamic modeling. One set of self-consistent thermodynamic parameters is obtained for each of these binary systems. Comparisons between calculated and measured phase diagrams show that most of the experimental information can be satisfactorily accounted for by the present thermodynamic descriptions.


2020 ◽  
Vol 56 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Y.-Y. Huang ◽  
B. Wu ◽  
F. Li ◽  
L.-L. Chen ◽  
Z.-X. Deng ◽  
...  

This study presents the thermodynamic modeling of the Ir-Mo and Ir-W systems by means of the CALPHAD (CALculation of PHAse Diagrams) approach supported with the first-principles calculations. A critical evaluation of the phase equilibria and the thermodynamic property data in literature was conducted for both systems. Due to the lack of experimental data, the first-principles calculations were applied to obtain the enthalpies of the solid and intermetallic phases. The thermodynamic parameters were assessed using the PARROT module of Thermo-Calc. A set of self-consistent parameters for the Ir-Mo and Ir-W systems was obtained after the optimization. Satisfactory agreement between the calculated results and the experimental data, including phase equilibria and thermodynamic properties was achieved.


Author(s):  
Jie-Qiong Hu ◽  
Ming Xie ◽  
Yongtai Chen ◽  
Jiheng Fang ◽  
Qiao Zhang

Abstract Au-Pt-Sn alloys are a novel class of materials with promising catalytic properties. This study provides updated information on phase equilibrium structures and thermodynamics of the Au-Pt-Sn ternary system. The formation enthalpies of Au-Sn and Pt-Sn binary subsystems were predicted by first principles calculations and these values were further refined by CALPHAD method. The results obtained accurately reproduced the experimental data. The reassessed phase diagram of the Au-Pt-Sn ternary system accurately described the phase composition of several Au-Pt-Sn alloys, which is essential for further modifications of these materials.


2007 ◽  
Vol 561-565 ◽  
pp. 1899-1902 ◽  
Author(s):  
T. Tokunaga ◽  
N. Hanaya ◽  
Hiroshi Ohtani ◽  
Mitsuhiro Hasebe

A thermodynamic analysis of the Fe-Mn-P ternary system has been carried out using the CALPHAD method. Among the three binary systems relevant to this ternary phase diagram, the thermodynamic parameters of the Mn-P binary system were evaluated in this study. The enthalpy of formation of the binary phosphides obtained from our first-principles calculations was utilized in the present analysis to compensate for the lack of available experimental data. The thermodynamic descriptions of the Fe-Mn and Fe-P binary systems were taken from previous studies. The phase equilibria in the Fe-Mn-P ternary system were analysed based on the experimental data on the phase boundaries. The calculated phase diagrams are in agreement with the experimental results.


2013 ◽  
Vol 49 (3) ◽  
pp. 307-313 ◽  
Author(s):  
Z. Cao ◽  
J. Xin ◽  
C. Chen ◽  
S. Liu ◽  
B. Hu ◽  
...  

The Bi-M (M = Ti, Cr, V) systems have been critically reviewed and modeled by means of the CALPHAD technique. All the intermetallics (BiTi3, BiTi2, Bi9Ti8, Bi3Ti2 and Bi2Ti) were treated as stoichiometric compounds. The enthalpy of formation at 0 K for BiTi2 was computed via first-principles calculations to assist the thermodynamic modeling. The gas phases for the Bi-Cr and Bi-V systems were treated as ideal gas. A set of self-consistent thermodynamic parameters has been finally obtained for each of these binary systems. Comparisons between the calculated and measured phase diagrams as well as first-principles calculations show that most of experimental data can be satisfactorily reproduced by the present thermodynamic descriptions.


1990 ◽  
Vol 193 ◽  
Author(s):  
P. A. Sterne ◽  
L. T. Wille

ABSTRACTWe have performed a number of first principles electronic structure calculations for YBa 2Cu 3O7_y with different oxygen orderings and concentrations. The resulting total energies have been used to assess the applicability of some of the proposed models for oxygen ordering in this system. We find that the results are consistent with an Ising-like model with asymmetric next-neighbor interactions between oxygen sites. We determine effective interaction parameters from the first principles calculations and use them to compute the phase diagram for the system, which is in excellent agreement with experiment for the tetragonal-orthorhombic I transition.


2017 ◽  
Vol 53 (3) ◽  
pp. 179-187 ◽  
Author(s):  
H. Zhang ◽  
C. Zhang ◽  
W.W. Wang ◽  
Y. Du ◽  
P. Zhou ◽  
...  

The Pb-Sr system has been critically reviewed and modeled by means of the CALPHAD (CALculation of PHAse Diagrams) approach. It contains seven stoichiometric compounds, i.e. SrPb3, Sr3Pb5, Sr2Pb3, SrPb, Sr5Pb4, Sr5Pb3 and Sr2Pb, in which the SrPb3 and Sr2Pb phases melt congruently, and the other five phases form via peritectic reactions. The enthalpies of formation for the intermetallic compounds at 0 K are provided by first-principles calculations. The liquid, fcc and bcc phases are modeled as substitutional solution phases. Both Redlich-Kister and exponential polynomials are used to describe the excess Gibbs energy of the liquid. Two sets of self-consistent thermodynamic parameters are obtained by considering reliable experimental data and the computed enthalpies of formation. Comprehensive comparisons between the calculated and measured phase diagram and thermodynamic data show that the experimental information is satisfactorily accounted for by the present thermodynamic description.


2009 ◽  
Author(s):  
Ligen Wang ◽  
Maija M. Kuklja ◽  
Mark Elert ◽  
Michael D. Furnish ◽  
William W. Anderson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document