measured phase
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7410
Author(s):  
Ruey-Ching Twu ◽  
Kai-Hsuan Li ◽  
Bo-Lin Lin

A low-cost polyethylene terephthalate fluidic sensor (PET-FS) is demonstrated for the concentration variation measurement on fluidic solutions. The PET-FS consisted of a triangular fluidic container attached with a birefringent PET thin layer. The PET-FS was injected with the test liquid solution that was placed in a common path polarization interferometer by utilizing a heterodyne scheme. The measured phase variation of probe light was used to obtain the information regarding the concentration change in the fluidic liquids. The sensor was experimentally tested using different concentrations of sodium chloride solution showing a sensitivity of 3.52 ×104 deg./refractive index unit (RIU) and a detection resolution of 6.25 × 10−6 RIU. The estimated sensitivity and detection resolutions were 5.62 × 104 (deg./RIU) and 6.94 × 10−6 RIU, respectively, for the hydrochloric acid. The relationship between the measured phase and the concentration is linear with an R-squared value reaching above 0.995.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kehua Zhang ◽  
Miaomiao Zhu ◽  
Lihong Ma ◽  
Jiaheng Zhang ◽  
Yong Li

In white-light diffraction phase imaging, when used with insufficient spatial filtering, phase image exhibits object-dependent artifacts, especially around the edges of the object, referred to the well-known halo effect. Here we present a new deep-learning-based approach for recovering halo-free white-light diffraction phase images. The neural network-based method can accurately and rapidly remove the halo artifacts not relying on any priori knowledge. First, the neural network, namely HFDNN (deep neural network for halo free), is designed. Then, the HFDNN is trained by using pairs of the measured phase images, acquired by white-light diffraction phase imaging system, and the true phase images. After the training, the HFDNN takes a measured phase image as input to rapidly correct the halo artifacts and reconstruct an accurate halo-free phase image. We validate the effectiveness and the robustness of the method by correcting the phase images on various samples, including standard polystyrene beads, living red blood cells and monascus spores and hyphaes. In contrast to the existing halo-free methods, the proposed HFDNN method does not rely on the hardware design or does not need iterative computations, providing a new avenue to all halo-free white-light phase imaging techniques.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 805
Author(s):  
Shi Zuo ◽  
Jianzhong Zhao ◽  
Yumei Zhou

This article presents a low power digital controlled oscillator (DCO) with an ultra low power duty cycle correction (DCC) scheme. The DCO with the complementary cross-coupled topology uses the controllable tail resistor to improve the tail current efficiency. A robust duty cycle correction (DCC) scheme is introduced to replace self-biased inverters to save power further. The proposed DCO is implemented in a Semiconductor Manufacturing International Corporation (SMIC) 40 nm CMOS process. The measured phase noise at room temperature is −115 dBc/Hz at 1 MHz offset with a dissipation of 210 μμW at an oscillating frequency of 2.12 GHz, and the resulin figure-of-merit is s −189 dBc/Hz.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Maoxiong Zhao ◽  
Mu Ku Chen ◽  
Ze-Peng Zhuang ◽  
Yiwen Zhang ◽  
Ang Chen ◽  
...  

AbstractMetalenses have emerged as a new optical element or system in recent years, showing superior performance and abundant applications. However, the phase distribution of a metalens has not been measured directly up to now, hindering further quantitative evaluation of its performance. We have developed an interferometric imaging phase measurement system to measure the phase distribution of a metalens by taking only one photo of the interference pattern. Based on the measured phase distribution, we analyse the negative chromatic aberration effect of monochromatic metalenses and propose a feature size of metalenses. Different sensitivities of the phase response to wavelength between the Pancharatnam-Berry phase-based metalens and propagation phase-reliant metalens are directly observed in the experiment. Furthermore, through phase distribution analysis, it is found that the distance between the measured metalens and the brightest spot of focusing will deviate from the focal length when the metalens has a low nominal numerical aperture, even though the metalens is ideal without any fabrication error. We also use the measured phase distribution to quantitatively characterise the imaging performance of the metalens. Our phase measurement system will help not only designers optimise the designs of metalenses but also fabricants distinguish defects to improve the fabrication process, which will pave the way for metalenses in industrial applications.


2020 ◽  
Vol 10 (4) ◽  
pp. 252-262
Author(s):  
Ming-Che Lee

This research proposes a novel method to investigate the performance of the S21 detection circuit. Aiming at low frequencies or DC, the method serves as an efficient way of verification and enjoys the benefit of low testing costs. The novel investigation method is demonstrated at 50 MHz and verified by the scattering parameters at 11.05 GHz. Based on the investigation, a model of process variations is constructed. The length of the interface paths is estimated by the model to be 63µm, which is consistent with the corresponding length of 74.6µm in the layout. For the measured phase and magnitude, the model indicates that the process variations in the device under test cause errors of 18.91% and 1.27%, whereas those in the interface paths lead to errors of 1.83% and 1%. Based on the model, practical recommendations are also proposed to further improve the measurement precision in the future.


Author(s):  
N. F. M. Yasid ◽  
A. A. Alawady ◽  
M. F. M. Yousof ◽  
M. A. Talib ◽  
M. S. Kamarudin

Different techniques for monitoring the transformer condition are continuously discussed. This is due to the fact that transformers are one of the most expensive components in the power system network. Not to mention the cost to fix any failure occurred in the transformer that have becoming more expensive nowadays. Frequency response analysis (FRA) is found to be the best method to monitor the transformer reliability. This paper presents a continuation of study presented in previous paper [1]. The study performed a laboratory test to show that the response of a normal winding phase A can be affected by short circuit fault which occurred at LV winding phase a, b, and c. To further investigate, current paper performed FRA measurement and applied fault on all phases. The same procedure is repeated on a distribution transformer to verify the findings. This is to examine the effect of fault at winding of other phases to the response of measured phase.


2020 ◽  
Author(s):  
Zhen Zhong ◽  
Xuping Zhang

In the coherent PHI-OTDR system, the phase signal is retrieved based on the reference point and the observation point which are off and closer to the two sides of step of the phase change. In the experiment, the optical pulse with the changed peak power, width or shape is injected into the fiber for interrogating the change of the quantitative characteristic of the measured phase signal. When the pulse width is fixed at 200 ns and its peak power is adjusted from 14 dBm to -23 dBm, the amplitude is slightly increased from 17.3575 rad to 17.4411 rad as long as the Rayleigh backscattering signal can be found in the electrical signal. Changing the pulse width from 260 ns to 80 ns when the peak power is fixed at 14 dBm, the maximum amplitude and the minimum amplitude of the measured phase signal are 17.4625 rad to 17.4509 rad, respectively. When the arbitrary shape of the optical pulse generated from the MZI structure with a changed delay fiber from 3 m to 6 m, the amplitude varies from 17.4558 rad to 17.4819 rad. For every measurement, the change of frequency is also small. And the small value of standard deviation supports the accuracy of the measurement. All the measurements show that the changed pulse nearly has no impact on the quantitative characteristic of the measured phase signal in the coherent PHI-OTDR system. Moreover, we also find that the phase signal of external event can be correctly extracted as long as the Rayleigh backscattering signal can be detected.<br>


Sign in / Sign up

Export Citation Format

Share Document