scholarly journals Diffusion coefficients in multiphase Ni80Cr20-Ti system

2021 ◽  
Vol 57 (1) ◽  
pp. 137-144
Author(s):  
B. Wierzba ◽  
D. Serafin ◽  
W.J. Nowak ◽  
P. Wierzba ◽  
A. Ciecko ◽  
...  

In this paper, the reactive diffusion in Ni80C20r?Ti ternary system is discussed at 1173K. The diffusion couple was prepared and annealed for 100 h. The two intermetallic phases and two two-phase zones occurred, namely: Ti2Ni, TiNi, TiNi+Cr, and TiNi3+Cr. Based on the experimental results (molar fractions, thicknesses of the intermetallic phases), the intrinsic diffusion coefficients of all components in each phase were numerically approximated. The Wagner method was used in the pure intermetallic phases. In the two phase zones the approximation was based on the generalized Darken and Wagner methods. The presented methods allowed for determination of the effective diffusion coefficients in each presented phase.

2019 ◽  
Vol 38 (2019) ◽  
pp. 151-157 ◽  
Author(s):  
Bartek Wierzba ◽  
Wojciech J. Nowak ◽  
Daria Serafin

AbstractThe interdiffusion in Ti-based alloys was studied. It was shown that during diffusion at 1,123 K formation of four intermetallic phases occurs. The diffusion paths for six different diffusion couples were determined. Moreover, the entropy production was calculated – the approximation used for determination of the sequence of intermetallic phase formation. In theoretical analysis, the intrinsic diffusion coefficients were determined from the modified Wagner method.


Author(s):  
María M. Rodríguez ◽  
Javier R. Arballo ◽  
Laura A. Campañone ◽  
Rodolfo H. Mascheroni

AbstractThe objective of this work was to analyze the relevant process conditions on osmotic dehydration of plums and to determine the diffusion coefficients related to this process. The influence of solution (type and concentration of solute, temperature, fruit/solution ratio) and process time on water loss, water content and solutes gain were studied. Process analysis was performed experimentally by means of a set of 16 duplicate tests and numerically by mathematical modeling of the unsteady-state mass transfer phenomena. Experiments were carried out with glucose and sorbitol solutions (40–60 % w/w), dehydrating plum pieces during 2 h at temperatures of 25 and 40ºC, with fruit/solution ratios of 1/4 and 1/10. For calculating effective diffusion coefficients, a novelty inverse-method was applied, the approximate shape of food-pieces was considered using Finite Elements Method. Calculated diffusion coefficients ranged from 1.13 × 10−09to 4.71 × 10−09m2s−1and 0.44 × 10−09to 3.46 × 10−09m2s−1, for water and solutes, respectively.


Sign in / Sign up

Export Citation Format

Share Document