diffusion couples
Recently Published Documents


TOTAL DOCUMENTS

581
(FIVE YEARS 41)

H-INDEX

42
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 113
Author(s):  
Jiali Zhang ◽  
Jing Zhong ◽  
Qin Li ◽  
Lijun Zhang

Nb3Sn plays an irreplaceable role in superconducting parts due to its stable performance under high field conditions. Accurate phase equilibria and interdiffusion coefficients are of great significance for designing novel Nb3Sn superconductors. However, the related experimental information is still in a state of scarcity because of the difficulty in fabrication of Nb-Sn alloys caused by the large difference in melting points of Nb and Sn. In this paper, a simple but pragmatic approach was first proposed to prepare the Nb/Sn liquid-solid reactive diffusion couples (LSDCs) at 1100 °C and 1200 °C, of which the phase identification of the formed layer and the measurement of composition-distance profiles were conducted. The formed layer in Nb/Sn LSDCs was confirmed to be Nb3Sn compound. While the measured composition profiles were employed to determine the phase equilibria according to the local equilibrium hypothesis and the interdiffusion coefficients with an aid of the latest version of HitDIC software. The determined phase equilibria of Nb3Sn, (Nb) and liquid show good agreement with the assessed phase diagram. While the calculated interdiffusion coefficients and activation energy for diffusion in Nb3Sn are consistent with both experimental and theoretical data in the literature. Moreover, the growth of the formed Nb3Sn layer in Nb/Sn LSDCs was also found to be diffusion controlled. All the obtained phase equilibria and interdiffusion coefficients are of great value for further thermodynamic and kinetic modeling of the Nb-Sn system. Furthermore, it is anticipated that the presently proposed approach of fabricating liquid-solid reactive diffusion couple should serve as a general one for various alloy systems with large differences in melting points.


Author(s):  
Bogusław Bożek ◽  
Lucjan Sapa ◽  
Katarzyna Tkacz-Śmiech ◽  
Marek Zajusz ◽  
Marek Danielewski

AbstractInterdiffusion between dissimilar solids can change the properties of joined materials. Although much work has been done to study experimentally and theoretically interdiffusion in one-dimensional (1-D) diffusion couples, studying interdiffusion in two-dimensional (2-D) or three-dimensional (3-D) solids remains a challenge. In this article, we report an experiment and develop a model to study interdiffusion in a multicomponent system of 2-D geometry. The results (concentration maps and profiles) are compared with data obtained by modeling and numerical simulations. It is assumed that the system satisfies Vegard’s rule and diffusion coefficients are composition dependent. To model the multidimensional diffusion with a drift, we take benefit of the concept of the drift potential. A nonlinear parabolic-elliptic system of strongly coupled differential equations is formulated and the implicit difference method, preserving Vegard’s rule, is applied in the simulations.


Materialia ◽  
2021 ◽  
Vol 16 ◽  
pp. 101046
Author(s):  
Neelamegan Esakkiraja ◽  
Anuj Dash ◽  
Avik Mondal ◽  
K.C. Hari Kumar ◽  
Aloke Paul

2021 ◽  
Vol 547 ◽  
pp. 152757
Author(s):  
Yinbin Miao ◽  
Bei Ye ◽  
Jingyi Shi ◽  
Kun Mo ◽  
Laura Jamison ◽  
...  

2021 ◽  
Vol 29 ◽  
pp. 179-203
Author(s):  
Irina V. Belova ◽  
Mohammad Afikuzzaman ◽  
Graeme E. Murch

A novel study of analysis interdiffusion in multicomponent alloys is investigated by means of closed form solutions and numerical simulations. Quaternary as well as selected CoCrFeMnNi (HEAs) quinary metallic systems are analysed using one, two and three diffusion couples with the full set of interdiffusion coefficients being calculated. A custom written Matlab fitting program (MFP) is used as the main tool for the simultaneous fitting into multiple composition profiles in both systems. The retrieved interdiffusion matrices are obtained using a newly developed approach that is interlinked with composition vectors, eigenvalues and eigenvector. On average, it can be concluded that the accuracy of the obtained matrices steadily improves with the increase of the number of couples used in the analysis.


Author(s):  
Dylan Bardgett ◽  
Renae N. Gannon ◽  
Danielle M. Hamann ◽  
Dennice M. Roberts ◽  
Sage R. Bauers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document