scholarly journals Robust state feedback controller design of STATCOM using chaotic optimization algorithm

2010 ◽  
Vol 7 (2) ◽  
pp. 253-268 ◽  
Author(s):  
Amin Safari ◽  
Hossein Shayeghi ◽  
Ali Heidar

In this paper, a new design technique for the design of robust state feedback controller for static synchronous compensator (STATCOM) using Chaotic Optimization Algorithm (COA) is presented. The design is formulated as an optimization problem which is solved by the COA. Since chaotic planning enjoys reliability, ergodicity and stochastic feature, the proposed technique presents chaos mapping using Lozi map chaotic sequences which increases its convergence rate. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results reveal that the proposed controller has an excellent capability in damping power system low frequency oscillations and enhances greatly the dynamic stability of the power systems. Moreover, the system performance analysis under different operating conditions shows that the phase based controller is superior compare to the magnitude based controller.

2013 ◽  
Vol 404 ◽  
pp. 657-662 ◽  
Author(s):  
Hao Wu ◽  
Ze Biao Shan ◽  
Yao Wu Shi

Due to operating conditions and economic factors, it may be either practical or feasible to measuring the chemical species directly in the continuous stirred tank reactor (CSTR) system which is a typical nonlinear, multi-variables, time-varying system. So, a concentration estimate strategy of components based on Kalman filter is proposed, with which the measurement of temperature conversion can be reconstructed. Then the state feedback controller is designed based on the estimated strategy. Simulation results show that the proposed control scheme is efficient and the system contains good dynamic performance.


2011 ◽  
Vol 403-408 ◽  
pp. 3813-3818
Author(s):  
Jian Wu Zhu ◽  
Yuan Chun Ding

This paper is concerned with the problem of robust stability and stabilization of singular systems with uncertainties in both the derivative and state matrices. By using a parameter dependent Lyapunov function, we derive the LMI-based sufficient conditions for the stabilization of the singular systems. Secondly, by solving these LMIs, a proportional plus derivative (PD) state feedback controller is designed for the closed-loop systems to be quadratically normal and quadratically stable (QNQS). Finally, the numerical example is given to show the effectiveness of the proposed theorems.


Sign in / Sign up

Export Citation Format

Share Document