scholarly journals Transient radiative hydromagnetic free convection flow past an impulsively started vertical plate with uniform heat and mass flux

2006 ◽  
Vol 33 (1) ◽  
pp. 31-63 ◽  
Author(s):  
Ramachandra Prasad ◽  
Bhaskar Reddy ◽  
R. Muthucumaraswamy

The interaction of free convection with thermal radiation of viscous incompressible MHD unsteady flow past an impulsively started vertical plate with uniform heat and mass flux is analyzed. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, space craft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering .The Rosseland approximation is used to describe the radiative heat transfer in the limit of the optically thin fluid. The non-linear, coupled equations are solved using an implicit finite difference scheme of Crank-Nicolson type. Velocity, temperature and concentration of the flow have been presented for various parameters such as thermal Grashof number, mass Grashof number, Prandtl number, Schmidt number, radiation parameter and magnetic parameter. The local and average skin friction, Nusslet number and Sherwood number are also presented graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. .

2011 ◽  
Vol 7 (1) ◽  
pp. 1-10 ◽  
Author(s):  
S. Suneetha ◽  
N. Bhaskar Reddy

The interaction of free convection with thermal radiation of a viscous incompressible unsteady MHD flow past a moving vertical cylinder with heat and mass transfer in a porous medium is analyzed. The fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved by using an implicit finite-difference scheme of Crank-Nicolson type. The effects of various physical parameters such as thermal Grashof number, mass Grashof number, magnetic parameter, radiation parameter and Schmidt number on the velocity, temperature,  concentration,  local as well as average skin-friction, Nusselt number and Sherwood number for various parameters are computed and represented graphically. It is found that at small values of radiation parameter ,  the velocity and temperature of the fluid increases sharply near the cylinder as the time  increases. Also, an increase in the magnetic field leads to a decrease in the velocity and a rise in the temperature.As the permeability parameter increases,it is seen that the flow accelerates. This model finds applications in geophysics and engineering.DOI: 10.3329/jname.v7i1.2901


Author(s):  
N. K. Gupta ◽  
U. S. Rajput

In this paper, we are analyzing Soret effect and inclined magnetic field on unsteady free convection MHD flow past an impulsively started vertical plate with chemical reaction. Fluid considered is electrically conducting. The Laplace transform method has been used to find the exact solutions for the concentration, momentum and energy equations. The flow model consists of a magnetic field inclined from vertical by an angle . The flow is considered unsteady and heat is transferred through free convection. The velocity profiles are discussed with the help of graphs drawn for different parameters like thermal Grashof number, the Soret number, the Prandtl number, the chemical reaction parameter, the Hartmann number, the Schmidt number, the mass Grashof number, time and inclination of magnetic field. The numerical values of skin friction have been discussed with the help of table for different parameters.


2013 ◽  
Vol 18 (2) ◽  
pp. 329-339 ◽  
Author(s):  
P. Chandrakala

Finite difference solutions of the unsteady MHD flow past an impulsively started infinite vertical plate with uniform heat and mass flux are presented here, taking into account the homogeneous chemical reaction of first order. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity, temperature and concentration for different parameters such as chemical reaction parameter, Schmidt number, Prandtl number, thermal Grashof number, mass Grashof number and time are studied. It is observed that due to the presence of a first order chemical reaction, the velocity increases during the generative reaction and decreases in the destructive reaction. It is observed that the velocity decreases in the presence of the magnetic field, as compared to its absence.


Sign in / Sign up

Export Citation Format

Share Document