Soret Effect on Unsteady MHD Free Convection Flow Past an Impulsively Started Vertical Plate with Chemical Reaction

Author(s):  
N. K. Gupta ◽  
U. S. Rajput

In this paper, we are analyzing Soret effect and inclined magnetic field on unsteady free convection MHD flow past an impulsively started vertical plate with chemical reaction. Fluid considered is electrically conducting. The Laplace transform method has been used to find the exact solutions for the concentration, momentum and energy equations. The flow model consists of a magnetic field inclined from vertical by an angle . The flow is considered unsteady and heat is transferred through free convection. The velocity profiles are discussed with the help of graphs drawn for different parameters like thermal Grashof number, the Soret number, the Prandtl number, the chemical reaction parameter, the Hartmann number, the Schmidt number, the mass Grashof number, time and inclination of magnetic field. The numerical values of skin friction have been discussed with the help of table for different parameters.

2016 ◽  
Vol 21 (1) ◽  
pp. 95-105 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
P. Sivakumar

Abstract The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.


2013 ◽  
Vol 18 (1) ◽  
pp. 259-267 ◽  
Author(s):  
R. Muthucumaraswamy ◽  
V. Valliammal

An exact solution of an unsteady flow past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence of a transverse magnetic field has been studied. The plate temperature is raised to Tw and the species concentration level near the plate is also made to rise Cʹw . The dimensionless governing equations are solved using the Laplace-transform technique. The velocity, temperature and concentration profiles are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, time and a. It is observed that the velocity decreases with increasing the magnetic field parameter.


2021 ◽  
Vol 2 (2) ◽  
pp. 52-59
Author(s):  
F. Zulkiflee ◽  
S. Shafie ◽  
A. Ali ◽  
A.Q. Mohamad

This research purpose is to investigate the exact solutions for unsteady free convection flow between oscillating parallel plates with mass diffusion and chemical reaction. The governing equations are modelled and reduced using non-dimensional variables. The method used is Laplace transform method. Solutions for velocity, temperature, and concentration fields as well as skin friction, Nusselt and Sherwood number are obtained. For physical understanding, analytical results for velocity, temperature and concentration profile are plotted graphically with respect to the Schmidt number, Prandtl number, oscillating parameter, Grashof number, mass Grashof number and chemical reaction parameter. Increasing Prandtl number and Schmidt number decreases the concentration, velocity, temperature, and skin friction but increases the Sherwood and Nusselt numbers.


The effects of heat source/sink and chemical reaction with mass diffusion on free convective incompressible viscous fluid flow past an accelerated vertical plate with magnetic field has been investigated. Laplace transformation method has been applied to solve the system of linear partial differential equations. The result is presented in form of complementary error function and exponential function. The effect of non dimensional parameters such as Schmidt number (Sc), Accelerated parameter (a), Chemical reaction parameter (K), Prandtl number (Pr), Magnetic field parameter (M), Mass Grashof number (Gm), Heat source/sink parameter (H), Thermal Grashof number (Gr) on temperature, concentration, velocity has been discussed with graphs.


2006 ◽  
Vol 33 (1) ◽  
pp. 31-63 ◽  
Author(s):  
Ramachandra Prasad ◽  
Bhaskar Reddy ◽  
R. Muthucumaraswamy

The interaction of free convection with thermal radiation of viscous incompressible MHD unsteady flow past an impulsively started vertical plate with uniform heat and mass flux is analyzed. This type of problem finds application in many technological and engineering fields such as rocket propulsion systems, space craft re-entry aerothermodynamics, cosmical flight aerodynamics, plasma physics, glass production and furnace engineering .The Rosseland approximation is used to describe the radiative heat transfer in the limit of the optically thin fluid. The non-linear, coupled equations are solved using an implicit finite difference scheme of Crank-Nicolson type. Velocity, temperature and concentration of the flow have been presented for various parameters such as thermal Grashof number, mass Grashof number, Prandtl number, Schmidt number, radiation parameter and magnetic parameter. The local and average skin friction, Nusslet number and Sherwood number are also presented graphically. It is observed that, when the radiation parameter increases the velocity and temperature decrease in the boundary layer. .


2014 ◽  
Vol 19 (1) ◽  
pp. 17-26
Author(s):  
P. Chandrakala ◽  
P. Narayana

Abstract The effects of thermal radiation on a flow past an impulsively started infinite vertical plate in the presence of a magnetic field have been studied. The fluid considered is a gray, absorbing-emitting radiation but non-scattering medium. The dimensionless governing equations are solved by an efficient, more accurate, unconditionally stable and fast converging implicit scheme. The effects of velocity and temperature for different parameters such as the thermal radiation, magnetic field, Schmidt number, thermal Grashof number and mass Grashof number are studied. It is observed that the velocity decreases in the presence of thermal radiation or a magnetic field


Sign in / Sign up

Export Citation Format

Share Document