finite difference analysis
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Cong-Oanh Nguyen ◽  
Thi Van-Tram Dao ◽  
Thi-Thanh Tran

A series of finite difference analysis of the soft ground treatment with PVDs application has been performed with the application of the newly developed consolidation model. The model utilizes the concept of multi-compression indices and coefficients of consolidation to investigate the behaviors of the soft ground deposit on pore water pressure dissipation, surface and sub-layered ground settlement and to validate the newly developed CONSOPRO finite-difference procedure. Furthermore, the pre-consolidation pressures of the soft ground deposit are characterized with the combination of the piezocone penetration profiling and constant rate of strain consolidation tests under 0.02 %/min. on undisturbed samples which were retrieved at the investigated site, Saigon Premier Container Terminal (SPCT) in the South of Vietnam. On the comparison of the back-calculation results to the field observing data, the correlation between the coefficients of consolidation determined by constant-rate-of-strain (CRS) consolidation tests and those from piezocone dissipation tests, which were carried out after the soil improvement, is developed.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Ali Lakirouhani ◽  
Reyhaneh Jafari ◽  
Hadi Hasanzadehshooiili

In this paper, a three-dimensional finite difference analysis is presented to investigate the interactive effects of sequential tunneling and the superstructure on the settlement profile of the ground. To simulate the practical sequential tunneling procedure, tunnel excavation is conducted in a step-by-step framework; tunnel excavation starts from the beginning of the model and is updated in a continuous manner, and the installation of the tunnel support system is done with a delay step compared to tunnel excavation. The numerical modeling accuracy is validated using the available analytical and numerical solutions for both two-dimensional and three-dimensional simplified cases. The well-validated modeling procedure is adopted to investigate effects of tunnel diameter, depth of tunneling, and number of superstructure stories on the profile of occurring settlements. Two cases of free-field and three-dimensional superstructural modeling are compared with regard to the effect of tunneling. In addition, the effect of tunneling advancement on the generation of excess structural forces and moments are studied as another important factor in the soil-tunneling-superstructure interaction problem. It is observed that, in the free-field case, with advancing the tunnel face, the longitudinal settlement profiles approach the steady-state condition and the maximum ground settlement tends to converge to a specific value, whereas as the tunnel passes under a structure, the settlement increases steadily as the tunnel progresses. There is a direct relationship between the depth and diameter of the tunnel and the settlement. In addition, the effect of the number of superstructure stories on the maximum settlement is more considerable compared to the free-field condition. According to the results, when the tunnel passes under 8-story and 12-story structures, the maximum settlement increases by 40% and 70%, respectively, compared to the free-field condition. It is also shown that tunneling-induced settlements result in the regeneration of structural forces.


Sign in / Sign up

Export Citation Format

Share Document