scholarly journals Heat transfer from a rotating circular cylinder in the steady regime: Effects of Prandtl number

2012 ◽  
Vol 16 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Varun Sharma ◽  
Kumar Dhiman

In this work, effects of Prandtl number on the heat transfer characteristics of an unconfined rotating circular cylinder are investigated for varying rotation rate (? = 0 - 5) in the Reynolds number range 1 - 35 and Prandtl numbers range 0.7 - 100 in the steady flow regime. The numerical calculations are carried out by using a finite volume method based commercial CFD solver FLUENT. The isotherm patterns are presented for varying values of Prandtl number and rotation rate in the steady regime. The variation of the local and the average Nusselt numbers with Reynolds number, Prandtl number and rotation rate are presented for the above range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds and Prandtl numbers. With increasing value of the Prandtl number, the average Nusselt number increases for the fixed value of the rotation rate and the Reynolds number; however, the larger values of the Prandtl numbers show a large reduction in the value of the average Nusselt number with increasing rotation rate.

2017 ◽  
Vol 38 (2) ◽  
pp. 3-20
Author(s):  
Rafik Bouakkaz ◽  
Fouzi Salhi ◽  
Yacine Khelili ◽  
Mohamed Quazzazi ◽  
Kamel Talbi

AbstractIn this work, steady flow-field and heat transfer through a copper- water nanofluid around a rotating circular cylinder with a constant nondimensional rotation rate α varying from 0 to 5 was investigated for Reynolds numbers of 5–40. Furthermore, the range of nanoparticle volume fractions considered is 0–5%. The effect of volume fraction of nanoparticles on the fluid flow and heat transfer characteristics are carried out by using a finite-volume method based commercial computational fluid dynamics solver. The variation of the local and the average Nusselt numbers with Reynolds number, volume fractions, and rotation rate are presented for the range of conditions. The average Nusselt number is found to decrease with increasing value of the rotation rate for the fixed value of the Reynolds number and volume fraction of nanoparticles. In addition, rotation can be used as a drag reduction technique.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
S. Roy ◽  
Tanmay Basak ◽  
Ch. Thirumalesha ◽  
Ch. Murali Krishna

A penalty finite element analysis with biquadratic elements has been carried out to investigate natural convection flows within an isosceles triangular enclosure with an aspect ratio of 0.5. Two cases of thermal boundary conditions are considered with uniform and nonuniform heating of bottom wall. The numerical solution of the problem is illustrated for Rayleigh numbers (Ra), 103⩽Ra⩽105 and Prandtl numbers (Pr), 0.026⩽Pr⩽1000. In general, the intensity of circulation is found to be larger for nonuniform heating at a specific Pr and Ra. Multiple circulation cells are found to occur at the central and corner regimes of the bottom wall for a small Prandtl number regime (Pr=0.026−0.07). As a result, the oscillatory distribution of the local Nusselt number or heat transfer rate is seen. In contrast, the intensity of primary circulation is found to be stronger, and secondary circulation is completely absent for a high Prandtl number regime (Pr=0.7–1000). Based on overall heat transfer rates, it is found that the average Nusselt number for the bottom wall is 2 times that of the inclined wall, which is well, matched in two cases, verifying the thermal equilibrium of the system. The correlations are proposed for the average Nusselt number in terms of the Rayleigh number for a convection dominant region with higher Prandtl numbers (Pr=0.7 and 10).


2018 ◽  
Vol 28 (10) ◽  
pp. 2404-2422 ◽  
Author(s):  
Mubbashar Nazeer ◽  
N. Ali ◽  
T. Javed

Purpose The main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar fluid. Design/methodology/approach It is assumed that the bottom wall is uniformly heated and the right inclined wall is cold, whereas the vertical wall is adiabatic and moving with upward/downward velocity v0/−v0, respectively. The micropolar fluid is considered to satisfy the Boussinesq approximation. The governing equations and boundary conditions are solved using the Galerkin finite element method. The Penalty method is used to eliminate the pressure term from the momentum equations. To accomplish the consistent solution, the value of the penalty parameter is taken 107. The simulations are performed for a wide range of Richardson number, micropolar parameter, Prandtl number and Reynolds number. Findings The results are presented in the form of streamlines, isotherms and variations of average Nusselt number and fluid flow rate depending on the Richardson number, Prandtl number, micropolar parameter and direction of the moving wall. The flow field and temperature distribution in the cavity are affected by these parameters. An average Nusselt number into the cavity in both cases increase with increasing Prandtl and Richardson numbers and decreases with increasing micropolar parameter, and it has a maximum value when the lid is moving in the downward direction for all the physical parameters. Research limitations/implications The present investigation is conducted for the steady, two-dimensional mixed convective flow in a right-angle triangular cavity filled with micropolar fluid. An extension of the present study with the effects of cavity inclination, square cavity, rectangular, trapezoidal and wavy cavity will be the interest of future work. Originality/value This work studies the effects of moving wall, micropolar parameter, Richardson number, Prandtl number and Reynolds number parameter in a right-angle triangular cavity filled with a micropolar fluid on the fluid flow and heat transfer. This study might be useful to flows of biological fluids in thin vessels, polymeric suspensions, liquid crystals, slurries, colloidal suspensions, exotic lubricants, solar engineering for construction of triangular solar collector, construction of thermal insulation structure and geophysical fluid mechanics, etc.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
C. Sasmal ◽  
Mohd Bilal Khan ◽  
R. P. Chhabra

Abstract In this study, the combined influence of fluid viscoelasticity and inertia on the flow and heat transfer characteristics of a circular cylinder in the steady laminar flow regime have been studied numerically. The momentum and energy equations together with an appropriate viscoelastic constitutive equation have been solved numerically using the finite volume method over the following ranges of conditions: Reynolds number, 0.1≤Re≤20; elasticity number (= Wi/Re, where Wi is the Weissenberg number), 0≤El≤0.5; Prandtl number, 10≤Pr≤100 for Oldroyd-B and finitely extensible nonlinear elastic-Peterlin (FENE-P) (with two values of the chain extensibility parameter L2, namely 10 and 100) viscoelastic fluid models including the limiting case of Newtonian fluids (El = 0). New extensive results are presented and discussed in terms of the streamline and isotherm profiles, drag coefficient, distribution of the local and surface averaged Nusselt number. Within the range of conditions embraced here, the separation of boundary layers (momentum and thermal) is seen to be completely suppressed in an Oldroyd-B fluid whereas it is accelerated for a FENE-P fluid in comparison with that seen for a Newtonian fluid otherwise under identical conditions. At a fixed elasticity number, both the drag coefficient and average Nusselt number are seen to be independent of the Reynolds number beyond a critical value for an Oldroyd-B fluid. In contrast, the drag coefficient decreases and the average Nusselt number increases with Reynolds number for a FENE-P fluid at a constant value of the elasticity number. Finally, a simple correlation for the average Nusselt number for a FENE-P fluid is presented which facilitates the interpolation of the present results for the intermediate values of the governing parameters and/or its a priori estimation in a new application.


Author(s):  
Pratik S. Bhansali ◽  
Srinath V. Ekkad

Abstract Heat transfer over rotating surfaces is of particular interest in rotating machinery such as gas turbine engines. The rotation of the gas turbine disc creates a radially outward flow on the disc surface, which may lead to ingress of hot gases into the narrow cavity between the disc and the stator. Impingement of cooling jet is an effective way of cooling the disc and countering the ingress of the hot gases. Present study focusses on investigating the effect of introducing pin-fins over the rotating disc on the heat transfer. The jet Reynolds number has been varied from 5000 to 18000, and the rotating Reynolds number has been varied from 5487 to 12803 for an aluminum disc of thickness 6.35mm and diameter 10.16 cm, over which square pins have been arranged in an inline fashion. Steady state temperature measurements have been taken using thermocouples embedded in the disc close to the target surface, and area average Nusselt number has been calculated. The effects of varying the height of the pin-fins, distance between nozzle and the disc surface and the inclination of the impinging jet with the axis of rotation have also been studied. The results have been compared with those for a smooth aluminum disc of equal dimensions and without any pin-fins. The average Nusselt number is significantly enhanced by the presence of pin fins. In the impingement dominant regime, where the effect of disc rotation is minimal for a smooth disc, the heat transfer increases with rotational speed in case of pin fins. The effect of inclination angle of the impinging jet is insignificant in the range explored in this paper (0° to 20°).


1967 ◽  
Vol 30 (2) ◽  
pp. 337-355 ◽  
Author(s):  
Peter D. Richardson

An analysis is described for convection from a circular cylinder subjected to transverse oscillations relative to the fluid in which it is immersed. The analysis is based upon use of the acoustic streaming flow field. It is assumed that the frequency involved is sufficiently small that the acoustic wavelength in the fluid is much larger than the cylinder diameter, and that there is no externally imposed mean flow across or along the cylinder. Solutions are presented which are appropriate for a wide range of Prandtl number, and the cases of small and of large streaming Reynolds number are distinguished. The analysis compares favourably with experiments when the influence of natural convection is small.


Author(s):  
Sampath Kumar Chinige ◽  
Arvind Pattamatta

An experimental study using Liquid crystal thermography technique is conducted to study the convective heat transfer enhancement in jet impingement cooling in the presence of porous media. Aluminium porous sample of 10 PPI with permeability 2.48e−7 and porosity 0.95 is used in the present study. Results are presented for two different Reynolds number 400 and 700 with four different configurations of jet impingement (1) without porous foams (2) over porous heat sink (3) with porous obstacle case (4) through porous passage. Jet impingement with porous heat sink showed a deterioration in average Nusselt number by 10.5% and 18.1% for Reynolds number of 400 and 700 respectively when compared with jet impingement without porous heat sink configuration. The results show that for Reynolds number 400, jet impingement through porous passage augments average Nusselt number by 30.73% whereas obstacle configuration enhances the heat transfer by 25.6% over jet impingement without porous medium. Similarly for Reynolds number 700, the porous passage configuration shows average Nusselt number enhancement by 71.09% and porous obstacle by 33.4 % over jet impingement in the absence of porous media respectively.


Author(s):  
Dean Ferley ◽  
Scott J. Ormiston

Numerical analysis of steady, two-dimensional, laminar forced convection in corrugated-plate channels is performed using a commercial CFD code: ANSYS CFX. The flow domain consists of six modules in each of three wall corrugations: sinusoidal-wavy-shaped (SWS), rounded-ellipse-shaped (RES), and rounded-vee-shaped (RVS). One ratio of minimum-to-maximum plate spacings and one module length-to-height ratio is considered. Fluid flow and heat transfer are repeating in the modules and the results are examined in a typical module in the fully-developed region for Reynolds numbers in the range of 25 to 300 for Prandtl numbers of 0.7 (air), 2.29 (water), and 34.6 (ethylene glycol). The RES corrugation produced the highest peak value of local Nusselt number as well as the highest friction factor. The SWS corrugation produced the highest average Nusselt number, except at a Prandtl number of 34.6 at higher Reynolds number where the RES corrugation had the highest value. The RVS corrugation had the lowest friction factor for the geometric configuration considered. The highest heat transfer rate per unit pumping power was found at the highest Prandtl number for the RES corrugation.


1968 ◽  
Vol 32 (1) ◽  
pp. 21-28 ◽  
Author(s):  
C. A. Hieber ◽  
B. Gebhart

Theoretical results are obtained for forced heat convection from a circular cylinder at low Reynolds numbers. Consideration is given to the cases of a moderate and a large Prandtl number, the analysis in each case being based upon the method of matched asymptotic expansions. Comparison between the moderate Prandtl number theory and known experimental results indicates excellent agreement; no relevant experimental work has been found for comparison with the large Prandtl number theory.


Author(s):  
S.A.M. Said ◽  
M.A. Habib ◽  
M.O. Iqbal

A numerical investigation aimed at understanding the flow and heat transfer characteristics of pulsating turbulent flow in an abrupt pipe expansion was carried out. The flow patterns are classified by four parameters; the Reynolds number, the Prandtl number, the abrupt expansion ratio and the pulsation frequency. The influence of these parameters on the flow was studied in the range 104<Re<5×104, 0.7<Pr<7.0, 0.2<d/D<0.6 and 5<f<35. It was found that the influence of pulsation on the mean time‐averaged Nusselt number is insignificant (around 10 per cent increase) for fluids having a Prandtl number less than unity. This effect is appreciable (around 30 per cent increase) for fluids having Prandtl number greater than unity. For all pulsation frequencies, the variation in the mean time‐averaged Nusselt number, maximum Nusselt number and its location with Reynolds number and diameter ratio exhibit similar characteristics to steady flows.


Sign in / Sign up

Export Citation Format

Share Document