scholarly journals Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives

2015 ◽  
Vol 19 (suppl. 1) ◽  
pp. 137-141 ◽  
Author(s):  
Zhi-Ping Fan ◽  
Hassan Jassim ◽  
Ravinder Raina ◽  
Xiao-Jun Yang
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Rasool Shah ◽  
Hassan Khan ◽  
Dumitru Baleanu ◽  
Poom Kumam ◽  
Muhammad Arif

AbstractIn this article, an efficient analytical technique, called Laplace–Adomian decomposition method, is used to obtain the solution of fractional Zakharov– Kuznetsov equations. The fractional derivatives are described in terms of Caputo sense. The solution of the suggested technique is represented in a series form of Adomian components, which is convergent to the exact solution of the given problems. Furthermore, the results of the present method have shown close relations with the exact approaches of the investigated problems. Illustrative examples are discussed, showing the validity of the current method. The attractive and straightforward procedure of the present method suggests that this method can easily be extended for the solutions of other nonlinear fractional-order partial differential equations.


2020 ◽  
Vol 14 (1) ◽  
pp. 1373-1384
Author(s):  
Hayette Saifi ◽  
Mohamed Rafik Sari ◽  
Mohamed Kezzar ◽  
Mahyar Ghazvini ◽  
Mohsen Sharifpur ◽  
...  

Author(s):  
Kuljeet Singh ◽  
Ranjan Das ◽  
Rohit K Singla

In this paper, the implementation of the Adomian decomposition method is demonstrated to solve a nonlinear heat transfer problem for a stepped fin involving all temperature-dependent means of heat transfer and nonlinear boundary conditions. Unlike conventional insulated tip assumption, to make the present problem more practical, the fin tip is assumed to disperse heat by convection and radiation. Thermal parameters such as the thermal conductivity, the surface heat transfer coefficient and the surface emissivity are considered to be temperature-dependent. Adomian polynomials are first obtained and then a set of Adomian decomposition method results is validated with pertinent results of the differential transformation method reported in the literature. Effects of different thermo-physical parameters on the temperature distribution and the efficiency have been exemplified. The study reveals that for a given set of conditions, the stepped fin may perform better than the straight fin.


2018 ◽  
Vol 5 (1) ◽  
pp. 40-45 ◽  
Author(s):  
Mohamed Kezzar ◽  
Ismai Tabet ◽  
Meriem Chieul ◽  
Noureddine Nafir ◽  
Abdelkade Khentout

2016 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
M. Safavi ◽  
A. A. Khajehnasiri

In this paper, we consider fractional differential equations (FDEs), specially modified Kawahara equation with time and space fractional derivatives, also we use Adomian decomposition method (ADM) to approximate the exact solutions of this equation. The ADM method converts the FKEs to an iterated formula that approximate solution is computable. The numerical examples illustrate efficiency and accuracy of the proposed method.


2018 ◽  
Vol 28 (11) ◽  
pp. 2551-2566 ◽  
Author(s):  
Mustafa Turkyilmazoglu

PurposeThis paper aims to revisite the traditional Adomian decomposition method frequently used for the solution of highly nonlinear extended surface problems in order to understand the heat transfer enhancement phenomenon. It is modified to include a parameter adjusting and controlling the convergence of the resulting Adomian series.Design/methodology/approachIt is shown that without such a convergence control parameter, some of the published data in the literature concerning the problem are lacking accuracy or the worst is untrustful. With the proposed amendment over the classical Adomian decomposition method, it is easy to gain the range of parameters guaranteeing the convergence of the Adomian series.FindingsWith the presented improvement, the reliable behavior of the fin tip temperature and the fin efficiency of the most interested from practical perspective are easily predicted.Originality/valueThe relevant future studies involving the fin problems covering many physical nonlinear properties must be properly treated as guided in this paper, while the Adomian decomposition method is adopted for the solution procedure.


Sign in / Sign up

Export Citation Format

Share Document