wood fiber
Recently Published Documents


TOTAL DOCUMENTS

857
(FIVE YEARS 212)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
pp. 130367
Author(s):  
Xinyu Zhou ◽  
Huiran Jin ◽  
Aotian Gu ◽  
Xiao Li ◽  
Lei Sun ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 13
Author(s):  
Agnieszka Zawadzińska ◽  
Piotr Salachna ◽  
Jacek S. Nowak ◽  
Waldemar Kowalczyk ◽  
Rafał Piechocki ◽  
...  

Plant biomass in the form of waste materials and by-products from various industries can be a valuable material for the production of composts and growing media for urban gardening. In this study, pulp and paper mill sludge, fruit-vegetable waste, mushroom spent substrate and rye straw were used to produce compost that was further used as a medium component in container cultivation of tomato. The plants were grown in containers with a capacity of 3 dm3 filled with three types of compost-based growing media supplemented with high peat, fen peat, pine bark and wood fiber. The tomato plants grown in 100% peat substrate served as controls. The plants grown in the compost-enriched media had a higher leaf greening index and percentage of ripe fruit, and exhibited an increased content of total polyphenols and flavonoids, potassium, calcium, magnesium and copper in fruit as compared with the control. The tomatoes grown in a medium consisting of 25% compost, 30% high peat, 15% low peat, 20% pine bark and 10% wood fiber reached the highest fresh fruit weight, total polyphenol content and L-ascorbic acid levels. This study demonstrated that the compost produced from natural materials from various sources was a valuable potting medium supplement with positive effects on tomato yield and nutritional value.


2021 ◽  
Vol 0 (12) ◽  
pp. 37-41
Author(s):  
M. A. Zyryanov ◽  
◽  
A. P. Mokhirev ◽  
V. L. Surnichev ◽  
E. A. Semenenko ◽  
...  

The process scheme for the processing section of logging waste into semi-finished wood-fiber products is presented. Design features of equipment are described. The solution allowing one to decrease manufacture complexity of work members of a grinder and to increase their maintainability was proposed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kewei Cai ◽  
Xueyan Zhou ◽  
Xiang Li ◽  
Ye Kang ◽  
Xiaoming Yang ◽  
...  

Larix olgensis is a tall deciduous tree species that has many applications in the wood fiber industry. Bud mutations are somatic mutations in plants and are considered an ideal material to identify and describe the molecular mechanism of plant mutation. However, the molecular regulatory mechanisms of bud mutations in L. olgensis remain unknown. In this study, dwarfed (or stunted), short-leaved, and multi-branched mutants of L. olgensis were found and utilized to identify crucial genes and regulatory networks controlling the multiple branch structure of L. olgensis. The physiological data showed that the branch number, bud number, fresh and dry weight, tracheid length, tracheid length-width ratio, inner tracheid diameter, and epidermal cell area of mutant plants were higher than that of wild-type plants. Hormone concentration measurements found that auxin, gibberellin, and abscisic acid in the mutant leaves were higher than that in wild-type plants. Moreover, the transcriptome sequencing of all samples using the Illumina Hiseq sequencing platform. Transcriptome analysis identified, respectively, 632, 157, and 199 differentially expressed genes (DEGs) in buds, leaves, and stems between mutant plants and wild type. DEGs were found to be involved in cell division and differentiation, shoot apical meristem activity, plant hormone biosynthesis, and sugar metabolism. Furthermore, bZIP, WRKY, and AP2/ERF family transcription factors play a role in bud formation. This study provides new insights into the molecular mechanisms of L. olgensis bud and branch formation and establishes a fundamental understanding of the breeding of new varieties in L. olgensis.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4352
Author(s):  
Juliana Sally Renner ◽  
Rhoda Afriyie Mensah ◽  
Lin Jiang ◽  
Qiang Xu ◽  
Oisik Das ◽  
...  

Wood-based composites such as wood plastic composites (WPC) are emerging as a sustainable and excellent performance materials consisting of wood reinforced with polymer matrix with a variety of applications in construction industries. In this context, wood-based composite materials used in construction industries have witnessed a vigorous growth, leading to a great production activity. However, the main setbacks are their high flammability during fires. To address this issue, flame retardants are utilized to improve the performance of fire properties as well as the flame retardancy of WPC material. In this review, flame retardants employed during manufacturing process with their mechanical properties designed to achieve an enhanced flame retardancy were examined. The addition of flame retardants and manufacturing techniques applied were found to be an optimum condition to improve fire resistance and mechanical properties. The review focuses on the manufacturing techniques, applications, mechanical properties and flammability studies of wood fiber/flour polymer/plastics composites materials. Various flame retardant of WPCs and summary of future prospects were also highlighted.


Author(s):  
Alberto Colella ◽  
Addolorata De Chiaro ◽  
Vincenzo Lettera

The aim of the present work was to develop an innovative and environmentally friendly process for wood fiber dyeing and to produce 3-dimensionally fully colored medium-density fiberboard (MDF). The potential of laccase-catalyzed polymerization of selected precursors to form dyes useful in fiberboard manufacturing, a technique used for the first time in this field, was demonstrated. Some of the 7 aromatic compounds tested yielded colored products after laccase treatment under both acid and alkaline conditions, and a good variety of colors was attained by using mixtures of two different monomers. To demonstrate the coloration and design potential of laccase conversion of aromatic compounds, MDFs were enzymatically dyed using an in situ one-step laccase-catalyzed coloration process, and the results were compared against commercial MDFs obtained by using organic coloring agents. Important advantages over conventional processing methods include good color fastness and, in some cases, new hydrophobic properties, allowing designers and woodworkers to explore the beauty of textures and the use of simpler and milder processing conditions that eliminate harsh chemical use and reduce energy consumption.


2021 ◽  
Vol 46 (341) ◽  
pp. 66-74
Author(s):  
Laimonis Kūliņš ◽  
Anete Meija ◽  
Rihards Roziņš ◽  
Kārlis Hermanis Liepa ◽  
Uldis Spulle

Abstract It has been common knowledge that as the density of wood increases, the mechanical properties also improve. In turn, the density of wood depends on many factors, including the wood moisture content, location and cross-section in the trunk, the type of treatment and the parameters of technological processes. There is a great deal of research reported in the scientific literature on the effect of solid wood density on mechanical properties for different wood species as well as for structural timber. However, no research data can be found related investigation of the influence of veneer density on the properties of the birch plywood. In the present study, researching the properties of 7-ply birch plywood (thickness 9 mm), it was concluded that as the density of veneers increases, the bending properties of plywood in the direction of wood fibers (covered veneers) increases. When determining the plywood gluing quality, similar tendencies have been observed. For plywood with a lower density in all veneer plies the gluing quality (tensile-shear test) for perpendicular wood fiber veneers increases in the direction from the symmetry axis or middle veneer to the plywood outer plies, which can be explained by the fact that the outer plies become denser at the time of the hot pressing process. The results of the study will allow birch plywood manufacturers in direct production, sort veneers by density, to produce plywood with very predictable gluing quality, plywood thickness and mechanical properties in bending.


Sign in / Sign up

Export Citation Format

Share Document