scholarly journals Inventory models with stock- and price-dependent demand for deteriorating items based on limited shelf space

2010 ◽  
Vol 20 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Chun-Tao Chang ◽  
Yi-Ju Chen ◽  
Tzong-Ru Tsai ◽  
Wu Shuo-Jye

This paper deals with the problem of determining the optimal selling price and order quantity simultaneously under EOQ model for deteriorating items. It is assumed that the demand rate depends not only on the on-display stock level but also the selling price per unit, as well as the amount of shelf/display space is limited. We formulate two types of mathematical models to manifest the extended EOQ models for maximizing profits and derive the algorithms to find the optimal solution. Numerical examples are presented to illustrate the models developed and sensitivity analysis is reported.

2022 ◽  
Vol 12 (1) ◽  
pp. 0-0

This paper deals with the problem of determining the optimal selling price and order quantity simultaneously under EOQ model for deteriorating items. It is assumed that the demand rate depends not only on the on-display stock level but also the selling price per unit, as well as the amount of shelf/display space is limited. We formulate two types of mathematical models to manifest the extended EOQ models for maximizing profits and derive the algorithms to find the optimal solution. Numerical examples are presented to illustrate the models developed and sensitivity analysis is reported.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Min ◽  
Jian Ou ◽  
Yuan-Guang Zhong ◽  
Xin-Bao Liu

This paper develops a generalized inventory model for exponentially deteriorating items with current-stock-dependent demand rate and permissible delay in payments. In the model, the payment for the item must be made immediately if the order quantity is less than the predetermined quantity; otherwise, a fixed trade credit period is permitted. The maximization of the average profit per unit of time is taken as the inventory system’s objective. The necessary and sufficient conditions and some properties of the optimal solution to the model are developed. Simple solution procedures are proposed to efficiently determine the optimal ordering policies of the considered problem. Numerical example is also presented to illustrate the solution procedures obtained.


Author(s):  
H.S. Shukla ◽  
R.P. Tripathi ◽  
Neha Sang

This paper presents EOQ (Economic Order Quantity) model with stock- level dependent demand and different types of holding cost function. We show that the total relevant inventory cost per unit time is convex with respect to cycle time. Mathematical models are established to determine optimal order quantity and total relevant inventory cost. Numerical examples are provided for two different models i.e. (i): Instantaneous replenishment with inventory dependent holding cost and (ii) Instantaneous replenishment with quadratic time dependent carrying cost. Numerical examples are provided to illustrate the proposed model. Sensitivity analysis of the optimal solution with respect to the parameters of the system is carried out. The second order approximation is used for finding closed form optimal solution. Mathematica 5.2 software is used to find numerical results.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1848
Author(s):  
Luis A. San-José ◽  
Joaquín Sicilia ◽  
Manuel González-de-la-Rosa ◽  
Jaime Febles-Acosta

In this paper, we address an inventory system where the demand rate multiplicatively combines the effects of time and selling price. It is assumed that the demand rate is the product of two power functions, one depending on the selling price and the other on the time elapsed since the last inventory replenishment. Shortages are allowed and fully backlogged. The aim is to obtain the lot sizing, the inventory cycle and the unit selling price that maximize the profit per unit time. To achieve this, two efficient algorithms are proposed to obtain the optimal solution to the inventory problem for all possible parameter values of the system. We solve several numerical examples to illustrate the theoretical results and the solution methodology. We also develop a numerical sensitivity analysis of the optimal inventory policy and the maximum profit with respect to the parameters of the demand function.


Author(s):  
Chandra K. Jaggi ◽  
Bimal Kumar Mishra ◽  
T. C. Panda

This chapter develops an economic order quantity model for deteriorating items with initial inspection, allowable shortage under the condition of permissible delay in payment by fuzzify the demand rate, deterioration rate and inspection parameter of non-defective parameter based on as triangular fuzzy numbers to fit the real word. The total fuzzy cost function has been defuzzified using signed distance and centroid method. Comparison between these two methods has also been discussed. The validity of the model has been established with the help of a hypothetical numerical example.


2008 ◽  
Vol 25 (02) ◽  
pp. 151-167 ◽  
Author(s):  
HORNG-JINH CHANG ◽  
PO-YU CHEN

According to the marketing principle, a decision maker may control demand rate through selling price and the unit facility cost of promoting transaction. In fact, the upper bound of willing-to-pay price and the transaction cost probably depend upon the subjective judgment of individual consumer in purchasing merchandise. This study therefore attempts to construct a bivariate distribution function to simultaneously incorporate the willing-to-pay price and the transaction cost into the classical economic order quantity (EOQ) model. Through the manipulation of the constructed bivariate distribution function, the demand function faced by the supplier can be expressed as a concrete form. The proposed mathematical model mainly concerns how to determine the initial inventory level for each business cycle, so that the profit per unit time is maximized by means of the selling price and the unit-transaction cost to control the selling rate. Furthermore, the sensitivity analysis of optimal solution is performed and the implication of this extended inventory model is also discussed.


Author(s):  
P. K. Tripathy ◽  
Anima Bag

The purpose of the current paper is to determine an optimal order quantity so as to minimize the total cost of the inventory system of a business enterprise. The model is developed for deteriorating items with stock and selling price dependent demand under inflation without permitting shortage. Optimal solution is achieved by cost minimization strategy considering replenishment cost, purchase cost, holding cost and deterioration cost with a special approach to entropy cost for bulk size purchasing units. The effectiveness of the proposed model has been avowed through empirical investigation. Sensitivity analysis has been accomplished to deduce managerial insights. Findings suggest that an increased inflationary effect results in increment in the system total cost. The paper can be extended by allowing shortage. The model can be utilized in the business firms dealing with bulk purchasing units of electric equipments, semiconductor devices, photographic films and many more.


Sign in / Sign up

Export Citation Format

Share Document