2017 ◽  
Author(s):  
Timothy R. Fallon ◽  
Sarah E. Lower ◽  
Ching-Ho Chang ◽  
Manabu Bessho-Uehara ◽  
Gavin J. Martin ◽  
...  

AbstractFireflies and their fascinating luminous courtships have inspired centuries of scientific study. Today firefly luciferase is widely used in biotechnology, but the evolutionary origin of their bioluminescence remains unclear. To shed light on this long-standing question, we sequenced the genomes of two firefly species that diverged over 100 million-years-ago: the North AmericanPhotinus pyralisand JapaneseAquatica lateralis.We also sequenced the genome of a related click-beetle, the CaribbeanIgnelater luminosus,with bioluminescent biochemistry near-identical to fireflies, but anatomically unique light organs, suggesting the intriguing but contentious hypothesis of parallel gains of bioluminescence. Our analyses support two independent gains of bioluminescence between fireflies and click-beetles, and provide new insights into the genes, chemical defenses, and symbionts that evolved alongside their luminous lifestyle.One Sentence Summary:Comparative analyses of the first linkage-group-resolution genomes of fireflies and related bioluminescent beetles address long-standing questions of the origin and evolution of bioluminescence and its associated traits.


2000 ◽  
Vol 20 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Ekaterina I. Dementieva ◽  
Elena A. Fedorchuk ◽  
Lubov Yu. Brovko ◽  
Alexander P. Savitskii ◽  
Natalya N. Ugarova

Fluorescence of luciferases from Luciola mingrelica (single tryptophanresidue, Trp-419) and Photinus pyralis (two tryptophan residues, Trp-417,Trp-426) was studied. Analysis of quenching of tryptophan fluorescenceshowed that the tryptophan residue conserved in all luciferases is notaccessible for charged quenchers, which is explained by the presence ofpositively and negatively charged amino acid residues in the close vicinityto it. An effective energy transfer from tryptophan to luciferin wasobserved during quenching of tryptophan fluorescence of both luciferaseswith luciferin. From the data on the energy transfer, the distance betweenthe luciferin molecule and Trp-417 (419) in the luciferin–luciferasecomplex was calculated: 11–15 Å for P. pyralis and 12–17Å for L. mingrelica luciferases. The role of the conserved Trp residuein the catalysis is discussed.


2015 ◽  
Author(s):  
Mihris Ibnu Saleem ◽  
Aravind S. P. ◽  
Rohini S. ◽  
Harikrishnan Madayath ◽  
Baji K. ◽  
...  

1997 ◽  
Vol 272 (11) ◽  
pp. 7099-7105 ◽  
Author(s):  
Ruth Herbst ◽  
Ute Schäfer ◽  
Robert Seckler
Keyword(s):  

1967 ◽  
Vol 60 (1) ◽  
pp. 81-91 ◽  
Author(s):  
Bernard L. Strehler ◽  
Gilbert D. Press ◽  
Anilbaran Raychaudhuri
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document