scholarly journals Thinning of point processes—covariance analyses

1985 ◽  
Vol 17 (1) ◽  
pp. 127-146 ◽  
Author(s):  
Jagadeesh Chandramohan ◽  
Robert D. Foley ◽  
Ralph L. Disney

Cross-covariances between the Bernoulli thinned processes of an arbitrary point process are determined. When the point process is renewal it is shown that zero correlation implies independence. An example is given to show that zero covariance between intervals does not imply zero covariance between counts. Mark-dependent thinning of Markov renewal processes is discussed and the results are applied to the overflow queue. Here we give an example of two uncorrelated but dependent renewal processes, neither of which is Poisson, which yield a Poisson process when superposed. Finally, we study Markov-chain thinning of renewal processes.

1985 ◽  
Vol 17 (01) ◽  
pp. 127-146
Author(s):  
Jagadeesh Chandramohan ◽  
Robert D. Foley ◽  
Ralph L. Disney

Cross-covariances between the Bernoulli thinned processes of an arbitrary point process are determined. When the point process is renewal it is shown that zero correlation implies independence. An example is given to show that zero covariance between intervals does not imply zero covariance between counts. Mark-dependent thinning of Markov renewal processes is discussed and the results are applied to the overflow queue. Here we give an example of two uncorrelated but dependent renewal processes, neither of which is Poisson, which yield a Poisson process when superposed. Finally, we study Markov-chain thinning of renewal processes.


1968 ◽  
Vol 5 (1) ◽  
pp. 169-176 ◽  
Author(s):  
Erhan Çinlar

Consider n independent vector valued point processes. Superposition is defined component by component as a natural extension of the definition for the one-dimensional case. Under proper conditions as n → ∞, it is shown that the superposed process is a many-dimensional Poisson process with independent components. The results are applied to the superposition of Markov renewal processes.


1968 ◽  
Vol 5 (01) ◽  
pp. 169-176 ◽  
Author(s):  
Erhan Çinlar

Consider n independent vector valued point processes. Superposition is defined component by component as a natural extension of the definition for the one-dimensional case. Under proper conditions as n → ∞, it is shown that the superposed process is a many-dimensional Poisson process with independent components. The results are applied to the superposition of Markov renewal processes.


1985 ◽  
Vol 22 (04) ◽  
pp. 828-835 ◽  
Author(s):  
J. Chandramohan ◽  
Lung-Kuang Liang

We show that Bernoulli thinning of arbitrarily delayed renewal processes produces uncorrelated thinned processes if and only if the renewal process is Poisson. Multinomial thinning of point processes is studied. We show that if an arbitrarily delayed renewal process or a doubly stochastic Poisson process is subjected to multinomial thinning, the existence of a single pair of uncorrelated thinned processes is sufficient to ensure that the renewal process is Poisson and the double stochastic Poisson process is at most a non-homogeneous Poisson process. We also show that a two-state Markov chain thinning of an arbitrarily delayed renewal process produces, under certain conditions, uncorrelated thinned processes if and only if the renewal process is Poisson and the Markov chain is a Bernoulli process. Finally, we identify conditions under which dependent point processes superpose to form a renewal process.


1985 ◽  
Vol 22 (4) ◽  
pp. 828-835 ◽  
Author(s):  
J. Chandramohan ◽  
Lung-Kuang Liang

We show that Bernoulli thinning of arbitrarily delayed renewal processes produces uncorrelated thinned processes if and only if the renewal process is Poisson. Multinomial thinning of point processes is studied. We show that if an arbitrarily delayed renewal process or a doubly stochastic Poisson process is subjected to multinomial thinning, the existence of a single pair of uncorrelated thinned processes is sufficient to ensure that the renewal process is Poisson and the double stochastic Poisson process is at most a non-homogeneous Poisson process. We also show that a two-state Markov chain thinning of an arbitrarily delayed renewal process produces, under certain conditions, uncorrelated thinned processes if and only if the renewal process is Poisson and the Markov chain is a Bernoulli process. Finally, we identify conditions under which dependent point processes superpose to form a renewal process.


Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
P.-C.G. Vassiliou

For a G-inhomogeneous semi-Markov chain and G-inhomogeneous Markov renewal processes, we study the change from real probability measure into a forward probability measure. We find the values of risky bonds using the forward probabilities that the bond will not default up to maturity time for both processes. It is established in the form of a theorem that the forward probability measure does not alter the semi Markov structure. In addition, foundation of a G-inhohomogeneous Markov renewal process is done and a theorem is provided where it is proved that the Markov renewal process is maintained under the forward probability measure. We show that for an inhomogeneous semi-Markov there are martingales that characterize it. We show that the same is true for a Markov renewal processes. We discuss in depth the calibration of the G-inhomogeneous semi-Markov chain model and propose an algorithm for it. We conclude with an application for risky bonds.


1995 ◽  
Vol 27 (03) ◽  
pp. 840-861 ◽  
Author(s):  
M. Martin ◽  
J. R. Artalejo

This paper deals with a service system in which the processor must serve two types of impatient units. In the case of blocking, the first type units leave the system whereas the second type units enter a pool and wait to be processed later. We develop an exhaustive analysis of the system including embedded Markov chain, fundamental period and various classical stationary probability distributions. More specific performance measures, such as the number of lost customers and other quantities, are also considered. The mathematical analysis of the model is based on the theory of Markov renewal processes, in Markov chains of M/G/l type and in expressions of ‘Takács' equation' type.


1984 ◽  
Vol 21 (04) ◽  
pp. 710-719
Author(s):  
Richard F. Serfozo

The Poisson process is regarded as a point process of rare events because of the classical result that the number of successes in a sequence of Bernoulli trials is asymptotically Poisson as the probability of a success tends to 0. It is shown that this rareness property of the Poisson process is characteristic of any infinitely divisible point process or random measure with independent increments. These processes and measures arise as limits of certain rarefactions of compound point processes: purely atomic random measures with uniformly null atom sizes. Examples include thinnings and partitions of point processes.


1986 ◽  
Vol 18 (03) ◽  
pp. 646-659 ◽  
Author(s):  
Steven P. Ellis

Spatial point processes are considered whose points are subjected to certain classes of affine transformations indexed by some variable, T. Under some hypotheses, for large T integrals with respect to such a point process behave approximately as if the process were Poisson. Under stronger hypotheses, the transformed process converges as a process to a Poisson process. The result gives the asymptotic distribution of certain density estimates.


1995 ◽  
Vol 32 (01) ◽  
pp. 39-51
Author(s):  
Xi-Ren Cao

One result that is of both theoretical and practical importance regarding point processes is the method of thinning. The basic idea of this method is that under some conditions, there exists an embedded Poisson process in any point process such that all its arrival points form a sub-sequence of the Poisson process. We extend this result by showing that on the embedded Poisson process of a uni- or multi-variable marked point process in which interarrival time distributions may depend on the marks, one can define a Markov chain with a discrete state that characterizes the stage of the interarrival times. This implies that one can construct embedded Markov chains with countable state spaces for the state processes of many practical systems that can be modeled by such point processes.


Sign in / Sign up

Export Citation Format

Share Document