The quasi-stationary distribution of the closed endemic sis model

1996 ◽  
Vol 28 (3) ◽  
pp. 895-932 ◽  
Author(s):  
Ingemar Nåsell

The quasi-stationary distribution of the closed stochastic SIS model changes drastically as the basic reproduction ratio R0 passes the deterministic threshold value 1. Approximations are derived that describe these changes. The quasi-stationary distribution is approximated by a geometric distribution (discrete!) for R0 distinctly below 1 and by a normal distribution (continuous!) for R0 distinctly above 1. Uniformity of the approximation with respect to R0 allows one to study the transition between these two extreme distributions. We also study the time to extinction and the invasion and persistence thresholds of the model.

1996 ◽  
Vol 28 (03) ◽  
pp. 895-932 ◽  
Author(s):  
Ingemar Nåsell

The quasi-stationary distribution of the closed stochastic SIS model changes drastically as the basic reproduction ratio R 0 passes the deterministic threshold value 1. Approximations are derived that describe these changes. The quasi-stationary distribution is approximated by a geometric distribution (discrete!) for R 0 distinctly below 1 and by a normal distribution (continuous!) for R 0 distinctly above 1. Uniformity of the approximation with respect to R 0 allows one to study the transition between these two extreme distributions. We also study the time to extinction and the invasion and persistence thresholds of the model.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Can Chen ◽  
Yanmei Kang

We introduce stochasticity into the SIS model with saturated incidence. The existence and uniqueness of the positive solution are proved by employing the Lyapunov analysis method. Then, we carry out a detailed analysis on both its almost sure exponential stability and itspth moment exponential stability, which indicates that thepth moment exponential stability implies the almost sure exponential stability. Additionally, the results show that the conditions for the disease to become extinct are much weaker than those in the corresponding deterministic model. The conditions for the persistence in the mean and the existence of a stationary distribution are also established. Finally, we derive the expressions for the mean and variance of the stationary distribution. Compared with the corresponding deterministic model, the threshold value for the disease to die out is affected by the half saturation constant. That is, increasing the saturation effect can reduce the disease transmission. Computer simulations are presented to illustrate our theoretical results.


Author(s):  
Chellamuthu Gokila ◽  
Muniyagounder Sambath

Abstract This paper deals with the stochastic Zika virus model within the human and mosquito population. Firstly, we prove that there exists a global positive solution. Further, we found the condition for a viral infection to be extinct. Besides that, we discuss the existence of a unique ergodic stationary distribution through a suitable Lyapunov function. The stationary distribution validates the occurrence of infection in the population. From that, we obtain the threshold value for prevail and disappear of disease within the population. Through the numerical simulations, we have verified the reproduction ratio R 0 S ${R}_{0}^{S}$ as stated in our theoretical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1221
Author(s):  
Giorgio Sonnino ◽  
Fernando Mora ◽  
Pasquale Nardone

We propose two stochastic models for the Coronavirus pandemic. The statistical properties of the models, in particular the correlation functions and the probability density functions, were duly computed. Our models take into account the adoption of lockdown measures as well as the crucial role of hospitals and health care institutes. To accomplish this work we adopt a kinetic-type reaction approach where the modelling of the lockdown measures is obtained by introducing a new mathematical basis and the intensity of the stochastic noise is derived by statistical mechanics. We analysed two scenarios: the stochastic SIS-model (Susceptible ⇒ Infectious ⇒ Susceptible) and the stochastic SIS-model integrated with the action of the hospitals; both models take into account the lockdown measures. We show that, for the case of the stochastic SIS-model, once the lockdown measures are removed, the Coronavirus infection will start growing again. However, the combined contributions of lockdown measures with the action of hospitals and health institutes is able to contain and even to dampen the spread of the SARS-CoV-2 epidemic. This result may be used during a period of time when the massive distribution of vaccines in a given population is not yet feasible. We analysed data for USA and France. In the case of USA, we analysed the following situations: USA is subjected to the first wave of infection by Coronavirus and USA is in the second wave of SARS-CoV-2 infection. The agreement between theoretical predictions and real data confirms the validity of our approach.


1993 ◽  
Vol 25 (01) ◽  
pp. 82-102
Author(s):  
M. G. Nair ◽  
P. K. Pollett

In a recent paper, van Doorn (1991) explained how quasi-stationary distributions for an absorbing birth-death process could be determined from the transition rates of the process, thus generalizing earlier work of Cavender (1978). In this paper we shall show that many of van Doorn's results can be extended to deal with an arbitrary continuous-time Markov chain over a countable state space, consisting of an irreducible class, C, and an absorbing state, 0, which is accessible from C. Some of our results are extensions of theorems proved for honest chains in Pollett and Vere-Jones (1992). In Section 3 we prove that a probability distribution on C is a quasi-stationary distribution if and only if it is a µ-invariant measure for the transition function, P. We shall also show that if m is a quasi-stationary distribution for P, then a necessary and sufficient condition for m to be µ-invariant for Q is that P satisfies the Kolmogorov forward equations over C. When the remaining forward equations hold, the quasi-stationary distribution must satisfy a set of ‘residual equations' involving the transition rates into the absorbing state. The residual equations allow us to determine the value of µ for which the quasi-stationary distribution is µ-invariant for P. We also prove some more general results giving bounds on the values of µ for which a convergent measure can be a µ-subinvariant and then µ-invariant measure for P. The remainder of the paper is devoted to the question of when a convergent µ-subinvariant measure, m, for Q is a quasi-stationary distribution. Section 4 establishes a necessary and sufficient condition for m to be a quasi-stationary distribution for the minimal chain. In Section 5 we consider ‘single-exit' chains. We derive a necessary and sufficient condition for there to exist a process for which m is a quasi-stationary distribution. Under this condition all such processes can be specified explicitly through their resolvents. The results proved here allow us to conclude that the bounds for µ obtained in Section 3 are, in fact, tight. Finally, in Section 6, we illustrate our results by way of two examples: regular birth-death processes and a pure-birth process with absorption.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bhagya Jyoti Nath ◽  
Kaushik Dehingia ◽  
Vishnu Narayan Mishra ◽  
Yu-Ming Chu ◽  
Hemanta Kumar Sarmah

AbstractIn this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper “The within-host viral kinetics of SARS-CoV-2” published in (Math. Biosci. Eng. 17(4):2853–2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number $(\chi _{0})$ ( χ 0 ) . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Luosheng Wen ◽  
Bin Long ◽  
Xin Liang ◽  
Fengling Zeng

We establish an SIS (susceptible-infected-susceptible) epidemic model, in which the travel between patches and the periodic transmission rate are considered. As an example, the global behavior of the model with two patches is investigated. We present the expression of basic reproduction ratioR0and two theorems on the global behavior: ifR0< 1 the disease-free periodic solution is globally asymptotically stable and ifR0> 1, then it is unstable; ifR0> 1, the disease is uniform persistence. Finally, two numerical examples are given to clarify the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document