Effect of Wind Speed, Air Temperature, Body Size and Vapor Density Difference on Evaporative Water Loss from the Turtle Chrysemys scripta

Copeia ◽  
1978 ◽  
Vol 1978 (4) ◽  
pp. 627 ◽  
Author(s):  
Robert E. Foley ◽  
James R. Spotila
1981 ◽  
Vol 54 (2) ◽  
pp. 195-202 ◽  
Author(s):  
James R. Spotila ◽  
Christina J. Weinheimer ◽  
Charles V. Paganelli

1996 ◽  
Vol 199 (2) ◽  
pp. 451-457 ◽  
Author(s):  
B Wolf ◽  
G Walsberg

We measured rates of respiratory and cutaneous evaporative water loss as a function of air temperature in a small desert bird, the verdin Auriparus flaviceps. Birds were placed in a two-compartment metabolic chamber that separately collected water evaporated from the bird's head and body. Cutaneous and respiratory evaporative water loss, as well as CO2 production, were measured in resting birds at 2 °C intervals between 30 and 50 °C. Metabolic rate was lowest at 38 °C (19 mW g-1) and increased to 28 mW g-1 at 50 °C. At the lowest air temperature, 30 °C, resting metabolic rate was 34 mW g-1. As air temperature increased from 30 to 50 °C, cutaneous water loss increased from 3.3 to 10.3 mg g-1 h-1 and respiratory water loss increased from 2.1-64.1 mg g-1 h-1. At moderate air temperatures (30-36 °C), water loss was divided almost evenly between respiratory and cutaneous components. As air temperature increased, however, verdins became heavily dependent on respiratory evaporation for heat dissipation. Evaporative water loss data for other species at high air temperatures suggest that partitioning of water loss may follow two different patterns. Evaporative heat dissipation may depend primarily on either cutaneous or respiratory modes of evaporative heat transfer. The physiological mechanisms and functional significance of these contrasting patterns of evaporative heat loss remain unknown.


2001 ◽  
Vol 204 (21) ◽  
pp. 3803-3814 ◽  
Author(s):  
Gilead Michaeli ◽  
Berry Pinshow

SUMMARY We assessed respiratory and cutaneous water loss in trained tippler pigeons (Columba livia) both at rest and in free flight. In resting pigeons, exhaled air temperature Tex increased with ambient air temperature Ta (Tex=16.3+0.705Ta) between 15°C and 30°C, while tidal volume VT (VT=4.7±1.0 ml, mean ± s.d. at standard temperature and pressure dry) and breathing frequency fR (fR=0.46±0.06 breaths s–1) were independent of Ta. Respiratory water loss, RWL, was constant over the range of Ta (RWL=1.2±0.4 mg g–1 h–1) used. In flying pigeons, Tex increased with Ta (Tex=25.8+0.34Ta), while fR was independent of Ta (fR=5.6±1.4 breaths s–1) between 8.8°C and 27°C. Breathing frequency varied intermittently between 2 and 8 breaths s–1 during flight and was not always synchronized with wing-beat frequency. RWL was independent of air temperature (RWL=9.2±2.9 mg g–1 h–1), but decreased with increasing inspired air water vapor density (ρin) (RWL=12.5–0.362ρin), whereas cutaneous water loss, CWL, increased with air temperature (CWL=10.122+0.898Ta), but was independent of ρin. RWL was 25.7–32.2 %, while CWL was 67.8–74.3 % of the total evaporative water loss. The data indicate that pigeons have more efficient countercurrent heat exchange in their anterior respiratory passages when at rest than in flight, allowing them to recover more water at rest at lower air temperatures. When evaporative water loss increases in flight, especially at high Ta, the major component is cutaneous rather than respiratory, possibly brought about by reducing the skin water vapor diffusion resistance. Because of the tight restrictions imposed by gas exchange in flight, the amount of water potentially lost through respiration is limited.


1986 ◽  
Vol 59 (1) ◽  
pp. 1-9 ◽  
Author(s):  
David S. Hinds ◽  
Richard E. MacMillen

Sign in / Sign up

Export Citation Format

Share Document