The Cohomology Ring Structure of a Fixed Point Set

1964 ◽  
Vol 80 (3) ◽  
pp. 524 ◽  
Author(s):  
Glen E. Bredon
Author(s):  
Loring W. Tu

This chapter explores Borel localization for a circle action. For a circle action, the Borel localization theorem says that up to torsion, the equivariant cohomology of an S1-manifold is concentrated on its fixed point set and that the isomorphism in localized equivariant cohomology of the manifold and its fixed point set is a ring isomorphism. This is clearly an important result in its own right. Moreover, since the fixed point set is a regular submanifold and is usually simpler than the manifold, the Borel localization theorem sometimes allows one to obtain the ring structure of the equivariant cohomology of an S1-manifold from that of its fixed point set. The chapter demonstrates this method with the example of S1 acting on S2 by rotations.


2004 ◽  
Vol 56 (3) ◽  
pp. 553-565 ◽  
Author(s):  
Ramin Mohammadalikhani

AbstractIn this article we are concerned with how to compute the cohomology ring of a symplectic quotient by a circle action using the information we have about the cohomology of the original manifold and some data at the fixed point set of the action. Our method is based on the Tolman-Weitsman theorem which gives a characterization of the kernel of the Kirwan map. First we compute a generating set for the kernel of the Kirwan map for the case of product of compact connected manifolds such that the cohomology ring of each of them is generated by a degree two class. We assume the fixed point set is isolated; however the circle action only needs to be “formally Hamiltonian”. By identifying the kernel, we obtain the cohomology ring of the symplectic quotient. Next we apply this result to some special cases and in particular to the case of products of two dimensional spheres. We show that the results of Kalkman and Hausmann-Knutson are special cases of our result.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Zhao-Rong Kong ◽  
Lu-Chuan Ceng ◽  
Qamrul Hasan Ansari ◽  
Chin-Tzong Pang

We consider a triple hierarchical variational inequality problem (THVIP), that is, a variational inequality problem defined over the set of solutions of another variational inequality problem which is defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Moreover, we propose a multistep hybrid extragradient method to compute the approximate solutions of the THVIP and present the convergence analysis of the sequence generated by the proposed method. We also derive a solution method for solving a system of hierarchical variational inequalities (SHVI), that is, a system of variational inequalities defined over the intersection of the fixed point set of a strict pseudocontractive mapping and the solution set of the classical variational inequality problem. Under very mild conditions, it is proven that the sequence generated by the proposed method converges strongly to a unique solution of the SHVI.


2018 ◽  
Vol 18 (3) ◽  
pp. 285-287
Author(s):  
Xiaoyang Chen

AbstractLet X bea Stein manifold with an anti-holomorphic involution τ and nonempty compact fixed point set Xτ. We show that X is diffeomorphic to the normal bundle of Xτ provided that X admits a complete Riemannian metric g of nonnegative sectional curvature such that τ*g = g.


2021 ◽  
Vol 22 (1) ◽  
pp. 17
Author(s):  
Hope Sabao ◽  
Olivier Olela Otafudu

<p>In this article, we introduce the concept of a soft quasi-pseudometric space. We show that every soft quasi-pseudometric induces a compatible quasi-pseudometric on the collection of all soft points of the absolute soft set whenever the parameter set is finite. We then introduce the concept of soft Isbell convexity and show that a self non-expansive map of a soft quasi-metric space has a nonempty soft Isbell convex fixed point set.</p>


2020 ◽  
Vol 29 (04) ◽  
pp. 2050021
Author(s):  
Mattia Mecchia

We consider 3-manifolds admitting the action of an involution such that its space of orbits is homeomorphic to [Formula: see text] Such involutions are called hyperelliptic as the manifolds admitting such an action. We consider finite groups acting on 3-manifolds and containing hyperelliptic involutions whose fixed-point set has [Formula: see text] components. In particular we prove that a simple group containing such an involution is isomorphic to [Formula: see text] for some odd prime power [Formula: see text], or to one of four other small simple groups.


2020 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Laurence Boxer ◽  
P. Christopher Staecker

<p>In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, and we obtain results that often differ greatly from standard results in classical topology.</p><p>We introduce several measures related to fixed points for continuous self-maps on digital images, and study their properties. Perhaps the most important of these is the fixed point spectrum F(X) of a digital image: that is, the set of all numbers that can appear as the number of fixed points for some continuous self-map. We give a complete computation of F(C<sub>n</sub>) where C<sub>n</sub> is the digital cycle of n points. For other digital images, we show that, if X has at least 4 points, then F(X) always contains the numbers 0, 1, 2, 3, and the cardinality of X. We give several examples, including C<sub>n</sub>, in which F(X) does not equal {0, 1, . . . , #X}.</p><p>We examine how fixed point sets are affected by rigidity, retraction, deformation retraction, and the formation of wedges and Cartesian products. We also study how fixed point sets in digital images can be arranged; e.g., for some digital images the fixed point set is always connected.</p>


Sign in / Sign up

Export Citation Format

Share Document