Maximal Functions, A ∞ -Measures, and Quasiconformal Maps

1991 ◽  
Vol 113 (3) ◽  
pp. 689
Author(s):  
Susan G. Staples
Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter focuses on the metric geometry of Teichmüller space. It first explains how one can think of Teich(Sɡ) as the space of complex structures on Sɡ. To this end, the chapter defines quasiconformal maps between surfaces and presents a solution to the resulting Teichmüller's extremal problem. It also considers the correspondence between complex structures and hyperbolic structures, along with the Teichmüller mapping, Teichmüller metric, and the proof of Teichmüller's uniqueness and existence theorems. The fundamental connection between Teichmüller's theorems, holomorphic quadratic differentials, and measured foliations is discussed as well. Finally, the chapter describes the Grötzsch's problem, whose solution is tied to the proof of Teichmüller's uniqueness theorem.


2005 ◽  
Vol 11 (4) ◽  
pp. 517-525
Author(s):  
Juris Steprāns

AbstractIt is shown to be consistent with set theory that every set of reals of size ℵ1 is null yet there are ℵ1 planes in Euclidean 3-space whose union is not null. Similar results will be obtained for other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain harmonic functions and a measure theoretic pigeonhole principle.


Author(s):  
Alberto Criado

In a recent article Aldaz proved that the weak L1 bounds for the centred maximal operator associated to finite radial measures cannot be taken independently with respect to the dimension. We show that the same result holds for the Lp bounds of such measures with decreasing densities, at least for small p near to one. We also give some concrete examples, including the Gaussian measure, where better estimates with respect to the general case are obtained.


2021 ◽  
Vol 15 (3) ◽  
Author(s):  
Helena F. Gonçalves

AbstractIn this paper we provide non-smooth atomic decompositions of 2-microlocal Besov-type and Triebel–Lizorkin-type spaces with variable exponents $$B^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w , ϕ ( R n ) and $$F^{\varvec{w}, \phi }_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w , ϕ ( R n ) . Of big importance in general, and an essential tool here, are the characterizations of the spaces via maximal functions and local means, that we also present. These spaces were recently introduced by Wu et al. and cover not only variable 2-microlocal Besov and Triebel–Lizorkin spaces $$B^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ B p ( · ) , q ( · ) w ( R n ) and $$F^{\varvec{w}}_{p(\cdot ),q(\cdot )}({\mathbb {R}}^n)$$ F p ( · ) , q ( · ) w ( R n ) , but also the more classical smoothness Morrey spaces $$B^{s, \tau }_{p,q}({\mathbb {R}}^n)$$ B p , q s , τ ( R n ) and $$F^{s,\tau }_{p,q}({\mathbb {R}}^n)$$ F p , q s , τ ( R n ) . Afterwards, we state a pointwise multipliers assertion for this scale.


2017 ◽  
Vol 132 (1) ◽  
pp. 229-245
Author(s):  
David Radnell ◽  
Eric Schippers ◽  
Wolfgang Staubach

2018 ◽  
Vol 68 (5) ◽  
pp. 1097-1112 ◽  
Author(s):  
Feng Liu

Abstract In this paper we investigate the regularity properties of one-sided fractional maximal functions, both in continuous case and in discrete case. We prove that the one-sided fractional maximal operators $ \mathcal{M}_{\beta}^{+} $ and $ \mathcal{M}_{\beta}^{-} $ map $ W^{1,p}(\mathbb{R}) $ into $ W^{1,q}(\mathbb{R}) $ with 1 <p <∞, 0≤β<1/p and q=p/(1-pβ), boundedly and continuously. In addition, we also obtain the sharp bounds and continuity for the discrete one-sided fractional maximal operators $ M_{\beta}^{+} $ and $ M_{\beta}^{-} $ from $ \ell^{1}(\mathbb{Z}) $ to $ {\rm BV}(\mathbb{Z}) $. Here $ {\rm BV}(\mathbb{Z}) $ denotes the set of all functions of bounded variation defined on ℤ. The results we obtained represent significant and natural extensions of what was known previously.


Sign in / Sign up

Export Citation Format

Share Document