On derivability

1937 ◽  
Vol 2 (3) ◽  
pp. 113-119 ◽  
Author(s):  
W. V. Quine

1. The notion of derivability. Italic capitals, with or without subscripts, will be used as variables. They are to take as values some manner of elements which may for the present be left undetermined. Now let us consider abstractly the notion of the derivability of an element X from one or more specified elements by a series of steps of a specified kind. This involves reference to two conditions upon elements. One of these conditions, expressible by some statement form containing a single free variable, determines the elements from which X is said to be derivable. The other condition, expressed say by a statement form containing k + 1 free variables, determines the kind of steps by which the derivation is to proceed; it is the condition which any elements Z1, … Zk, Y must fulfill if progress from Zi, …, Zk to Y is to constitute a step of derivation in the intended sense. Supposing “f(Y)” supplanted by the first of these statement forms, whatever it may be, and “g(Z1, …, Zk, Y)” supplanted by the other, let us adopt the form of notationto express derivability of X in the suggested sense. The meaning of (1) can be formulated more accurately as follows:(i) There are elements Y1 to Ym (for some m) such that Ym = X and, for each i≦m, either f(Yi) or else there are numbers j1 to Ym, each less than i, for which g(Yj1, …, Yjk, Yi).(Variable subscripts are to be understood, here and throughout the paper, as referring only to positive integers.)The notion (1) is illustrated in the ancestral R* of a relation R;1 for,Another illustration is afforded by metamathematics. Suppose our elements are the expressions used in some formal system; suppose we have defined “Post(Y)”, meaning that Y is a postulate of that system; and suppose we have defined “Inf(ZI, …, Zk, Y)” (for some fixed k large enough for all purposes of the system in question), meaning that Y proceeds from Z1, …, Zk by one application of one or another of the rules of inference of the system. Thenwould mean that X is a theorem of the system.

1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


1974 ◽  
Vol 39 (2) ◽  
pp. 313-317 ◽  
Author(s):  
G. D. Plotkin

The ω-rule in the λ-calculus (or, more exactly, the λK-β, η calculus) isIn [1] it was shown that this rule is consistent with the other rules of the λ-calculus. We will show the rule cannot be derived from the other rules; that is, we will give closed terms M and N such that MZ = NZ can be proved without using the ω-rule, for each closed term Z, but M = N cannot be so proved. This strengthens a result in [4] and answers a question of Barendregt.The language of the λ-calculus has an alphabet containing denumerably many variables a, b, c, … (which have a standard listing e1, e2, …), improper symbolsλ, ( , ) and a single predicate symbol = for equality.Terms are defined inductively by the following:(1) A variable is a term.(2) If M and N are terms, so is (MN); it is called a combination.(3) If M is a term and x is a variable, (λx M) is a term; it is called an abstraction.We use ≡ for syntactic identity of terms.If M and N are terms, M = N is a formula.BV(M), the set of bound variables in M, and FV(M), its free variables, are defined inductively byA term M is closed iff FV(M) = ∅.


1953 ◽  
Vol 18 (2) ◽  
pp. 115-118 ◽  
Author(s):  
John Myhill

The purpose of this paper is to present a system of arithmetic stronger than those usually employed, and to prove some syntactical theorems concerning it.We presuppose the lower functional calculus with identity and functions, and we start with three of Peano's axioms.The other two (0 ϵ N and x ϵ N .⊃. x′ ϵ N) we do not need since our variables are anyhow restricted to natural numbers. Sometimes in the interest of a uniform notation for functions, we write Sx instead of x′.Next we have two axioms for μ (the smallest number such that) as follows.A third axiom for μ must wait until we have defined ≤.Now we introduce the central feature of the system, the following rule of definition.RD. Let Φ be a previously unused symbol. Then we can introduce it by a pair of definitions of the following form (n ≥ 0),where F(x1, …, xn) is a wff in which no symbol occurs which was not previously defined (in particular, not Φ), and in which no free variables occur other than x1, …, xn (and possibly not all of these), and G(x1, …, xn, y) is a wff in which no free variables occur other than x1, …, xn, y (and possibly not all of these), and in which no symbol occurs which was not previously defined, except that Φ may occur but only if its last argument is y.


1982 ◽  
Vol 85 ◽  
pp. 223-230 ◽  
Author(s):  
Nobuyoshi Motohashi

This paper is a sequel to Motohashi [4]. In [4], a series of theorems named “elimination theorems of uniqueness conditions” was shown to hold in the classical predicate calculus LK. But, these results have the following two defects : one is that they do not hold in the intuitionistic predicate calculus LJ, and the other is that they give no nice axiomatizations of some sets of sentences concerned. In order to explain these facts more explicitly, let us introduce some necessary notations and definitions. Let L be a first order classical predicate calculus LK or a first order intuitionistic predicate calculus LJ. n-ary formulas in L are formulas F(ā) in L with a sequence ā of distinct free variables of length n such that every free variable in F occurs in ā.


1956 ◽  
Vol 21 (1) ◽  
pp. 36-48 ◽  
Author(s):  
R. O. Gandy

In part I of this paper it is shown that if the simple theory of types (with an axiom of infinity) is consistent, then so is the system obtained by adjoining axioms of extensionality; in part II a similar metatheorem for Gödel-Bernays set theory will be proved. The first of these results is of particular interest because type theory without the axioms of extensionality is fundamentally rather a simple system, and it should, I believe, be possible to prove that it is consistent.Let us consider — in some unspecified formal system — a typical expression of the axiom of extensionality; for example:where A(h) is a formula, and A(f), A(g) are the results of substituting in it the predicate variagles f, g for the free variable h. Evidently, if the system considered contains the predicate calculus, and if h occurs in A(h) only in parts of the form h(t) where t is a term which lies within the range of the quantifier (x), then 1.1 will be provable. But this will not be so in general; indeed, by introducing into the system an intensional predicate of predicates we can make 1.1 false. For example, Myhill introduces a constant S, where ‘Sϕψχω’ means that (the expression) ϕ is the result of substituting ψ for χ in ω.


1987 ◽  
Vol 52 (2) ◽  
pp. 374-387 ◽  
Author(s):  
T. E. Forster

We shall be concerned here with weak axiomatic systems of set theory with a universal set. The language in which they are expressed is that of set theory—two primitive predicates, = and ϵ, and no function symbols (though some function symbols will be introduced by definitional abbreviation). All the theories will have stratified axioms only, and they will all have Ext (extensionality: (∀x)(∀y)(x = y· ↔ ·(∀z)(z ϵ x ↔ z ϵ y))). In fact, in addition to extensionality, they have only axioms saying that the universe is closed under certain set-theoretic operations, viz. all of the formand these will always include singleton, i.e., ι′x exists if x does (the iota notation for singleton, due to Russell and Whitehead, is used here to avoid confusion with {x: Φ}, set abstraction), and also x ∪ y, x ∩ y and − x (the complement of x). The system with these axioms is called NF2 in the literature (see [F]). The other axioms we consider will be those giving ⋃x, ⋂x, {y: y ⊆x} and {y: x ⊆ y}. We will frequently have occasion to bear in mind that 〈 V, ⊆ 〉 is a Boolean algebra in any theory extending NF2. There is no use of the axiom of choice at any point in this paper. Since the systems with which we will be concerned exhibit this feature of having, in addition to extensionality, only axioms stating that V is closed under certain operations, we will be very interested in terms of the theories in question. A T-term, for T such a theory, is a thing (with no free variables) built up from V or ∧ by means of the T-operations, which are of course the operations that the axioms of T say the universe is closed under.


1962 ◽  
Vol 13 (2) ◽  
pp. 175-178 ◽  
Author(s):  
I. D. Macdonald

Letandbe, respectively, the upper and lower central series of a group G. Our purpose in this note is to extend known results and find some information as to which of the factors Zk/Zk−1 and Γk/Γk+1 may be infinite. Though our conclusions about the lower central series will be quite general we assume in the other case that the group is f.n., i.e. an extension of a finite group by a nilpotent group. The essential facts about f.n. groups are to be found in P. Hall's paper (4). We also refer to (4) for general notation; we reserve the letter k for positive integers.


1985 ◽  
Vol 50 (1) ◽  
pp. 169-201 ◽  
Author(s):  
Hiroakira Ono ◽  
Yuichi Komori

We will study syntactical and semantical properties of propositional logics weaker than the intuitionistic, in which the contraction rule (or, the exchange rule or the weakening rule, in some cases) does not hold. Here, the contraction rule means the rule of inference of the formif we formulate our logics in a Gentzen-type formal system. Some syntactical properties of these logics have been studied firstly by the second author in [11], in connection with the study of BCK-algebras (for information on BCK-algebras, see [9]). There, it turned out that such a syntactical method is a powerful and promising tool in studying BCK-algebras. Using this method, considerable progress has been made since then (see, e.g., [8], [18], [27]).In this paper, we will study these logics more comprehensively. We notice here that the distributive lawdoes not hold necessarily in these logics. By adding some axioms (or initial sequents) and rules of inference to these basic logics, we can obtain a lot of interesting nonclassical logics such as Łukasiewicz's many-valued logics, relevant logics, the intuitionistic logic and logics related to BCK-algebras, which have been studied separately until now. Thus, our approach will give a uniform way of dealing with these logics. One of our two main tools in doing so is Gentzen-type formulation of logics in syntax, and the other is semantics defined by using partially ordered monoids.


1951 ◽  
Vol 16 (2) ◽  
pp. 125-126 ◽  
Author(s):  
Raphael M. Robinson

If F is a field, and α is an element of F, we say that α is arithmetically definable in F if there is a formula containing one free variable and any number of bound variables, involving only the concepts of elementary logic and the operations of addition and multiplication, which is satisfied by α and by no other element of F. The range of the bound variables is understood to be F. Without changing the sense of the above definition, we can allow in our formulas symbols for specific integers, or even (if F has characteristic zero) symbols for specific rational numbers, since these are arithmetically definable.As an example, consider the field F = R(2¼), obtained by adjoining the positive fourth root of 2 to the field R of rationals. Notice that 2¼ is not defined arithmetically by the formula x2 = 2, since this equation has two roots in F.However, 2¼ may be defined arithmetically by the equivalencewhere we have used the logical symbols ↔ (if and only if), ∨ (there exists), and ∧ (and). For the equation y4 = 2 is satisfied by no elements of F except y = ±2¼, and in both cases y2 = 2¼. On the other hand, 2¼ is not arithmetically definable in F, since there is an automorphism of F which takes 2¼ into −2¼, so that every arithmetical condition satisfied by 2¼ is also satisfied by −2¼.In any field F, a necessary condition for the arithmetical definability of an element α is that α should be fixed for all automorphisms of F. That this condition is not always sufficient is shown by considering the field of real numbers. Here there is no automorphism but the identity, but there can of course be but a denumerable infinity of arithmetically definable real numbers. Tarski has shown that only the algebraic numbers are arithmetically definable.


1929 ◽  
Vol 1 (4) ◽  
pp. 244-245 ◽  
Author(s):  
Hrishikesh Sircar

§ 1 Introduction. The formulaewhere n, q, m are positive integers, are well known. I am not aware, however, of any paper dealing with the corresponding definite integrals of products of two Ferrers' Associated Legendre Functions of different integral orders and degrees. With the help of the formulae given in my previous paper in this volume it is possible to discuss these integrals. I have found in the case of the first integral that if the orders of the two associated functions are both odd or both even and if, in each case, the degrees are both odd or both even or equal, the integral has usually a non-zero value. If, however, the orders are both odd or both even and if the degree of the function having the greater order is less than that of the other, or if the degrees are one odd and one even, the integral vanishes. Further, if one of the orders be odd and the other even, and the corresponding degrees are also even and odd (or odd and even), the integral has a non-zero value; in all other cases it vanishes. The values of the second integral can be obtained in a similar manner. An example of the methods employed and the results obtained is given in the following section.


Sign in / Sign up

Export Citation Format

Share Document