On the axiom of extensionality – Part I

1956 ◽  
Vol 21 (1) ◽  
pp. 36-48 ◽  
Author(s):  
R. O. Gandy

In part I of this paper it is shown that if the simple theory of types (with an axiom of infinity) is consistent, then so is the system obtained by adjoining axioms of extensionality; in part II a similar metatheorem for Gödel-Bernays set theory will be proved. The first of these results is of particular interest because type theory without the axioms of extensionality is fundamentally rather a simple system, and it should, I believe, be possible to prove that it is consistent.Let us consider — in some unspecified formal system — a typical expression of the axiom of extensionality; for example:where A(h) is a formula, and A(f), A(g) are the results of substituting in it the predicate variagles f, g for the free variable h. Evidently, if the system considered contains the predicate calculus, and if h occurs in A(h) only in parts of the form h(t) where t is a term which lies within the range of the quantifier (x), then 1.1 will be provable. But this will not be so in general; indeed, by introducing into the system an intensional predicate of predicates we can make 1.1 false. For example, Myhill introduces a constant S, where ‘Sϕψχω’ means that (the expression) ϕ is the result of substituting ψ for χ in ω.

1967 ◽  
Vol 32 (3) ◽  
pp. 319-321 ◽  
Author(s):  
Leslie H. Tharp

We are concerned here with the set theory given in [1], which we call BL (Bernays-Levy). This theory can be given an elegant syntactical presentation which allows most of the usual axioms to be deduced from the reflection principle. However, it is more convenient here to take the usual Von Neumann-Bernays set theory [3] as a starting point, and to regard BL as arising from the addition of the schema where S is the formal definition of satisfaction (with respect to models which are sets) and ┌φ┐ is the Gödel number of φ which has a single free variable X.


1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


1954 ◽  
Vol 19 (3) ◽  
pp. 180-182 ◽  
Author(s):  
W. V. Quine

Consider any interpreted theory Θ, formulated in the notation of quantification theory (or lower predicate calculus) with interpreted predicate letters. It will be proved that Θ is translatable into a theory, likewise formulated in the notation of quantification theory, in which there is only one predicate letter, and it a dyadic one.Let us assume a fragment of set theory, adequate to assure the existence, for all x and y without regard to logical type, of the set {x, y) whose members are x and y, and to assure the distinctness of x from {x, y} and {{x}}. ({x} is explained as {x, x}.) Let us construe the ordered pair x; y in Kuratowski's fashion, viz. as {{x}, {x, y}}, and then construe x;y;z as x;(y;z), and x;y;z;w as x;(y;z;w), and so on. Let us refer to w, w;w, w;w;w, etc. as 1w, 2w, 3w, etc.Suppose the predicates of Θ are ‘F1’, ‘F2’, …, finite or infinite in number, and respectively d1-adic, d2-adic, …. Now let Θ′ be a theory whose notation consists of that of quantification theory with just the single dyadic predicate ‘F’, interpreted thus:The universe of Θ′ is to comprise all objects of the universe of Θ and, in addition, {x, y) for every x and y in the universe of Θ′. (Of course the universe of Θ may happen already to comprise all this.)Now I shall show how the familiar notations ‘x = y’, ‘x = {y, z}’, etc., and ultimately the desired ‘’, ‘’, etc. themselves can all be defined within Θ′.


1973 ◽  
Vol 38 (2) ◽  
pp. 315-319 ◽  
Author(s):  
Harvey Friedman

Let ZF be the usual Zermelo-Fraenkel set theory formulated without identity, and with the collection axiom scheme. Let ZF−-extensionality be obtained from ZF by using intuitionistic logic instead of classical logic, and dropping the axiom of extensionality. We give a syntactic transformation of ZF into ZF−-extensionality.Let CPC, HPC respectively be classical, intuitionistic predicate calculus without identity, whose only homological symbol is ∈. We use the ~ ~-translation, a basic tool in the metatheory of intuitionistic systems, which is defined byThe two fundamental lemmas about this ~ ~ -translation we will use areFor proofs, see Kleene [3, Lemma 43a, Theorem 60d].This - would provide the desired syntactic transformation at least for ZF into ZF− with extensionality, if A− were provable in ZF− for each axiom A of ZF. Unfortunately, the ~ ~-translations of extensionality and power set appear not to be provable in ZF−. We therefore form an auxiliary classical theory S which has no extensionality and has a weakened power set axiom, and show in §2 that the ~ ~-translation of each axiom of Sis provable in ZF−-extensionality. §1 is devoted to the translation of ZF in S.


2010 ◽  
Vol 75 (4) ◽  
pp. 1137-1146 ◽  
Author(s):  
Giovanni Curi

Introduction. In 1937 E. Čech and M.H. Stone, independently, introduced the maximal compactification of a completely regular topological space, thereafter called Stone-Čech compactification [8, 23]. In the introduction of [8] the non-constructive character of this result is so described: “It must be emphasized that β(S) [the Stone-Čech compactification of S] may be defined only formally (not constructively) since it exists only in virtue of Zermelo's theorem”.By replacing topological spaces with locales, Banaschewski and Mulvey [4, 5, 6], and Johnstone [14] obtained choice-free intuitionistic proofs of Stone-Čech compactification. Although valid in any topos, these localic constructions rely—essentially, as is to be demonstrated—on highly impredicative principles, and thus cannot be considered as constructive in the sense of the main systems for constructive mathematics, such as Martin-Löf's constructive type theory and Aczel's constructive set theory.In [10] I characterized the locales of which the Stone-Čech compactification can be defined in constructive type theory CTT, and in the formal system CZF+uREA+DC, a natural extension of Aczel's system for constructive set theory CZF by a strengthening of the Regular Extension Axiom REA and the principle of Dependent Choice.


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1960 ◽  
Vol 25 (4) ◽  
pp. 305-326 ◽  
Author(s):  
Kurt Schütte

In my paper [10] I introduced the syntactical concepts “positive part” and “negative part” of logical formulas in first-order predicate calculus. These concepts make it possible to establish logical systems on inference rules similar to Gentzen's inference rules but without using the concept “sequent” and without needing Gentzen's structural inference rules. Proof-theoretical investigations of several formal systems based on positive and negative parts are published in [11]. In this paper I consider a similar formal system of simple type theory.A syntactical concept of “strict derivability” results from the formal system in [10] by generalization of the axioms and inference rules from first to higher-order predicate calculus and by addition of inference rules for set abstraction by means of a λ-symbol which allows us to form set expressions of arbitrary types from well-formed formulas.


1998 ◽  
Vol 63 (4) ◽  
pp. 1399-1403
Author(s):  
Domenico Zambella

We denote by KP_ the fragment of set-theory containing the axioms of extensionality, pairing, union and foundation as well as the schemas of ∆0-comprehension and ∆0-collection, that is: Kripke-Platek set-theory (KP) with the axiom of foundation in place of the ∈-induction schema. The theory KP is obtained by adding to KP_ the schema of ∈-inductionUsing ∈-induction it is possible to prove the existence of the transi tive closure without appealing to the axiom of infinity (see, e.g., [1]). Vice versa, when a theory proves the existence of the transitive closure, some induction is immediately ensured (by foundation and comprehension). This is not true in general: e.g., the whole of Zermelo-Fraenkel set-theory without the axiom of infinity does not prove ∈-induction (in fact, it does not prove the existence of the transitive closure; see, e.g., [3]). Open-induction is the schema of ∈-induction restricted to open formulas. We prove the following theorem.KP_ proves open-induction.We reason in a fixed but arbitrary model of KP_ whom we refer to as the model. The language is extended with a name for every set in the model. We call this constants parameters. Let φ(x) be a satisfiable open-formula possibly depending on parameters and with no free variable but x. We show that φ(x) is satisfied by an ∈-minimal set, that is, a set a such that φ(a) and (∀x ∈ a) ¬φ(x). We assume that no ordinal satisfies φ(x), otherwise the existence of a ∈-minimal set follows from foundation and comprehension.


1975 ◽  
Vol 40 (2) ◽  
pp. 151-158 ◽  
Author(s):  
John Lake

Our results concern the natural models of Ackermann-type set theories, but they can also be viewed as results about the definability of ordinals in certain sets.Ackermann's set theory A was introduced in [1] and it is now formulated in the first order predicate calculus with identity, using ∈ for membership and an individual constant V for the class of all sets. We use the letters ϕ, χ, θ, and χ to stand for formulae which do not contain V and capital Greek letters to stand for any formulae. Then, the axioms of A* are the universal closures ofwhere all the free variables are shown in A4 and z does not occur in the Θ of A2. A is the theory A* − A5.Most of our notation is standard (for instance, α, β, γ, δ, κ, λ, ξ are variables ranging over ordinals) and, in general, we follow the notation of [7]. When x ⊆ Rα, we use Df(Rα, x) for the set of those elements of Rα which are definable in 〈Rα, ∈〉, using a first order ∈-formula and parameters from x.We refer the reader to [7] for an outline of the results which are known about A, but we shall summarise those facts which are frequently used in this paper.


1985 ◽  
Vol 50 (2) ◽  
pp. 344-348 ◽  
Author(s):  
Nicolas D. Goodman

Intuitionistic Zermelo-Fraenkel set theory, which we call ZFI, was introduced by Friedman and Myhill in [3] in 1970. The idea was to have a theory with the same axioms as ordinary classical ZF, but with Heyting's predicate calculus HPC as the underlying logic. Since some classically equivalent statements are intuitionistically inequivalent, however, it was not always obvious which form of a classical axiom to take. For example, the usual formulation of the axiom of foundation had to be replaced with a principle of transfinite induction on the membership relation in order to avoid having excluded middle provable and thus making the logic classical. In [3] the replacement axiom is taken in its most common classical form:In the presence of the separation axiom,this is equivalent to the axiomIt is this schema Rep that we shall call the replacement axiom.Friedman and Myhill were able to show in [3] that ZFI has a number of desirable “constructive” properties, including the existence property for both numbers and sets. They were not able to determine, however, whether ZFI is proof-theoretically as strong as ZF. This is still open.Three years later, in [2], Friedman introduced a theory ZF− which is like ZFI except that the replacement axiom is changed to the classically equivalent collection axiom:He showed that ZF− is proof-theoretically of the same strength as ZF, and he asked whether ZF− is equivalent to ZFI.


Sign in / Sign up

Export Citation Format

Share Document