Recursive functions in basic logic

1956 ◽  
Vol 21 (4) ◽  
pp. 337-346 ◽  
Author(s):  
Frederic B. Fitch

1.1 The system K* of basic logic, as presented in a previous paper, will be shown to be formalizable in an alternative way according to which the rule [E],is replaced by the rule [F],1.2. General recursive functions will be shown to be definable in K* in a way that retains functional notation, so that the equation,will be formalized in K* by the formula,where ‘f’, ‘p1’, … ‘pn’ respectively denote φ, x1, …, xn, and where ‘≐’ plays the role of numerical equality. Partial recursive functions may be handled in a similar way. The rule [E] is not required for dealing with primitive recursive functions by this method.1.3. An operator ‘G’ will be defined such that ‘[Ga ≐ p]’ is a theorem of K* if and only if ‘p’ denotes the Gödel number of ‘a’.1.4. In reformulating K* we assume ‘o0’, ‘o1,’ ‘o2’, …, have been so chosen that we can determine effectively whether or not a given U-expression is the mth member of the above series. The revised rules for K* are then as follows. (Double-arrow forms of these rules are derivable, except in the case of rule [V].)

2002 ◽  
Vol 12 (02) ◽  
pp. 229-246 ◽  
Author(s):  
JÖRG FISCHER ◽  
SERGEI GORLATCH

Dijkstra's famous thesis "goto considered harmful", which paved the way for structured programming, was formally substantiated by the result of Böhm and Jacopini on the Turing universality of the three well-known basic programming constructs. We argue for a similar ideal in parallel programming — "send-receive considered harmful" — i.e. abandoning explicit send-receive statements between processors and expressing programs using a restricted set of parallel constructs. We deal with recursive patterns of parallelism, represented formally as morphisms in a suitable calculus. The aim of this paper is to study the expressive power of two morphisms – catamorphisms and anamorphisms. For a restricted program calculus based on these morphisms, we constructively prove two formal results, whose pragmatic message is: (1) A programming language based on catamorphisms is computationally equivalent to the class of primitive recursive functions; (2) A programming language based on both catamorphisms and anamorphisms is equivalent to the class of partial recursive functions and is therefore Turing-universal. We present a case study on numerical integration, demonstrating the expressive power of ana- and catamorphisms for parallel programming.


1991 ◽  
Vol 56 (3) ◽  
pp. 1068-1074 ◽  
Author(s):  
Martin Kummer

The most basic construction of an r.e. nonrecursive set—e.g. of the halting problem—proceeds by taking the diagonal of a recursive enumeration of all r.e. sets. We will answer the question of which r.e. sets can be constructed in this manner.If ψ is a computable numbering of some class of partial recursive functions, we define the diagonal of ψ to be the set Kψ ≔ {i ∈ ω ∣ ψi(i)↓}- It is well known that Kφ is creative if φ is a Gödelnumbering, and that for each creative set K there exists a Gödelnumbering φ such that K = Kφ. That is to say, the class of diagonals of Gödelnumberings is characterized as the class of creative sets. This class was shown to be elementary lattice theoretic (e.l.t.) by Harrington (see [So87, XV. 1.1]).We give a characterization of diagonals of arbitrary computable numberings of the class P1 of all partial recursive functions. To this end we introduce the notion of a semihyperhypersimple (shhs) set, which generalizes the notion of hyperhypersimplicity to nonsimple sets. It is shown that the diagonals of numberings of P1 are exactly the non-shhs sets. Then, properties of shhs sets are discussed. For example, for each nonrecursive r.e. set A there exists a nonrecursive shhs set B ≤TA, but not every r.e. T-degree contains a shhs set. These results build upon previous work by Downey and Stob [DSta].The question whether the property “shhs” is (elementary) lattice theoretic remains open. A positive answer would give both an analog of Harrington's result mentioned above, and a generalization of the well-known fact, due to Lachlan [La68], that hyperhypersimplicity is e.l.t. Therefore, we suspect that shhs sets turn out to be useful in the study of the lattice of r.e. sets.Previously, for several constructions from recursion theory the role of the underlying numbering of P1 was investigated; see Martin ([Ma66a] or [So87, V.4.1]) and Lachlan ([La75] or [Od89, III.9.2]) for Post's simple set, and Jockusch and Soare ([JS73]; cf. also [So87, XII.3.6, 3.7]) for Post's hypersimple set. However, only Gödelnumberings were considered. An explanation for the greater variety which arises when arbitrary numberings of P1 are admitted is provided by the fact that the index set of Gödelnumberings is less complex than the index set of all numberings of P1. The former is Σ1-complete; the latter is Π4-complete.


1959 ◽  
Vol 55 (2) ◽  
pp. 145-148
Author(s):  
Alan Rose

It has been shown that every general recursive function is definable by application of the five schemata for primitive recursive functions together with the schemasubject to the condition that, for each n–tuple of natural numbers x1,…, xn there exists a natural number xn+1 such that


Author(s):  
E.M. Waddell ◽  
J.N. Chapman ◽  
R.P. Ferrier

Dekkers and de Lang (1977) have discussed a practical method of realising differential phase contrast in a STEM. The method involves taking the difference signal from two semi-circular detectors placed symmetrically about the optic axis and subtending the same angle (2α) at the specimen as that of the cone of illumination. Such a system, or an obvious generalisation of it, namely a quadrant detector, has the characteristic of responding to the gradient of the phase of the specimen transmittance. In this paper we shall compare the performance of this type of system with that of a first moment detector (Waddell et al.1977).For a first moment detector the response function R(k) is of the form R(k) = ck where c is a constant, k is a position vector in the detector plane and the vector nature of R(k)indicates that two signals are produced. This type of system would produce an image signal given bywhere the specimen transmittance is given by a (r) exp (iϕ (r), r is a position vector in object space, ro the position of the probe, ⊛ represents a convolution integral and it has been assumed that we have a coherent probe, with a complex disturbance of the form b(r-ro) exp (iζ (r-ro)). Thus the image signal for a pure phase object imaged in a STEM using a first moment detector is b2 ⊛ ▽ø. Note that this puts no restrictions on the magnitude of the variation of the phase function, but does assume an infinite detector.


Author(s):  
David J. Lobina

Recursion, or the capacity of ‘self-reference’, has played a central role within mathematical approaches to understanding the nature of computation, from the general recursive functions of Alonzo Church to the partial recursive functions of Stephen C. Kleene and the production systems of Emil Post. Recursion has also played a significant role in the analysis and running of certain computational processes within computer science (viz., those with self-calls and deferred operations). Yet the relationship between the mathematical and computer versions of recursion is subtle and intricate. A recursively specified algorithm, for example, may well proceed iteratively if time and space constraints permit; but the nature of specific data structures—viz., recursive data structures—will also return a recursive solution as the most optimal process. In other words, the correspondence between recursive structures and recursive processes is not automatic; it needs to be demonstrated on a case-by-case basis.


Sign in / Sign up

Export Citation Format

Share Document