On axiomatizability within a system

1953 ◽  
Vol 18 (1) ◽  
pp. 30-32 ◽  
Author(s):  
William Craig

Let C be the closure of a recursively enumerable set B under some relation R. Suppose there is a primitive recursive relation Q, such that Q is a symmetric subrelation of R (i.e. if Q(m, n), then Q(n, m) and R(m, n)), and such that, for each m ϵ B, Q(m, n) for infinitely many n. Then there exists a primitive recursive set A, such that C is the closure under R of A. For proof, note that , where f is a primitive recursive function which enumerates B, has the required properties. For each m ϵ B, there is an n ϵ A, such that Q(m, n) and hence Q(n, m); therefore the closure of A under Q, and hence that under R, includes B. Conversely, since Q is a subrelation of R, A is included in C. Finally, that A is primitive recursive follows from [2] p. 180.This observation can be applied to many formal systems S, by letting R correspond to the relation of deducibility in S, so that R(m, n) if and only if m is the Gödel number of a formula of S, or of a sequence of formulas, from which, together with axioms of S, a formula with the Gödel number n can be obtained by applications of rules of inference of S.

1956 ◽  
Vol 21 (2) ◽  
pp. 162-186 ◽  
Author(s):  
Raphael M. Robinson

A set S of natural numbers is called recursively enumerable if there is a general recursive function F(x, y) such thatIn other words, S is the projection of a two-dimensional general recursive set. Actually, it is no restriction on S to assume that F(x, y) is primitive recursive. If S is not empty, it is the range of the primitive recursive functionwhere a is a fixed element of S. Using pairing functions, we see that any non-empty recursively enumerable set is also the range of a primitive recursive function of one variable.We use throughout the logical symbols ⋀ (and), ⋁ (or), → (if…then…), ↔ (if and only if), ∧ (for every), and ∨(there exists); negation does not occur explicitly. The variables range over the natural numbers, except as otherwise noted.Martin Davis has shown that every recursively enumerable set S of natural numbers can be represented in the formwhere P(y, b, w, x1 …, xλ) is a polynomial with integer coefficients. (Notice that this would not be correct if we replaced ≤ by <, since the right side of the equivalence would always be satisfied by b = 0.) Conversely, every set S represented by a formula of the above form is recursively enumerable. A basic unsolved problem is whether S can be defined using only existential quantifiers.


1966 ◽  
Vol 31 (3) ◽  
pp. 359-364 ◽  
Author(s):  
Robert A. Di Paola

Following [1] we write {n} for the nth recursively enumerable (re) set; that is, {n} = {x|VyT(n, x, y)}. By a “pair (T, α)” we mean a consistent re extension T of Peano arithmetic P and an RE-formula α which numerates the non-logical axioms of T in P [4]. Given a pair (T, α) and a particular formula which binumerates the Kleene T predicate in P, there can be defined a primitive recursive function Nα such that and which has the additional property that {Nα(Nα(n))} = ø for all n.


Author(s):  
D. B. Madan ◽  
R. W. Robinson

AbstractAn infinite subset of ω is monotone (1–1) if every recursive function is eventually monotone on it (eventually constant on it or eventually 1–1 on it). A recursively enumerable set is co-monotone (co-1–1) just if its complement is monotone (1–1). It is shown that no implications hold among the properties of being cohesive, monotone, or 1–1, though each implies r-cohesiveness and dense immunity. However it is also shown that co-monotone and co-1–1 are equivalent, that they are properly stronger than the conjunction of r-maximality and dense simplicity, and that they do not imply maximality.


1958 ◽  
Vol 23 (4) ◽  
pp. 389-392 ◽  
Author(s):  
J. R. Shoenfield

In this paper we answer some of the questions left open in [2]. We use the terminology of [2]. In particular, a theory will be a formal system formulated within the first-order calculus with identity. A theory is identified with the set of Gödel numbers of the theorems of the theory. Thus Craig's theorem [1] asserts that a theory is axiomatizable if and only if it is recursively enumerable.In [2], Feferman showed that if A is any recursively enumerable set, then there is an axiomatizable theory T having the same degree of unsolvability as A. (This result was proved independently by D. B. Mumford.) We show in Theorem 2 that if A is not recursive, then T may be chosen essentially undecidable. This depends on Theorem 1, which is a result on recursively enumerable sets of some independent interest.Our second result, given in Theorem 3, gives sufficient conditions for a theory to be creative. These conditions are more general than those given by Feferman. In particular, they show that the system of Kreisel described in [2] is creative.


1977 ◽  
Vol 42 (3) ◽  
pp. 400-418 ◽  
Author(s):  
J. B. Remmel

Let N denote the natural numbers. If A ⊆ N, we write Ā for the complement of A in N. A set A ⊆ N is cohesive if (i) A is infinite and (ii) for any recursively enumerable set W either W ∩ A or ∩ A is finite. A r.e. set M ⊆ N is maximal if is cohesive.A recursively presented vector space (r.p.v.s.) U over a recursive field F consists of a recursive set U ⊆ N and operations of vector addition and scalar multiplication which are partial recursive and under which U becomes a vector space. A r.p.v.s. U has a dependence algorithm if there is a uniform effective procedure which applied to any n-tuple ν0, ν1, …, νn−1 of elements of U determines whether or not ν0, ν1 …, νn−1 are linearly dependent. Throughout this paper we assume that if U is a r.p.v.s. over a recursive field F then U is infinite dimensional and U = N. If W ⊆ U, then we say W is recursive (r.e., etc.) iff W is a recursive (r.e., etc.) subset of N. If S ⊆ U, we write (S)* for the subspace generated by S. If V1 and V2 are subspaces of U such that V1 ∩ V2 ={} (where is the zero vector of U), then we write V1 ⊕ V2 for (V1 ∪ V2)*. If V1 ⊆ V2⊆U are subspaces, we write V2/V1 for the quotient space.


1957 ◽  
Vol 22 (2) ◽  
pp. 161-175 ◽  
Author(s):  
Solomon Feferman

In his well-known paper [11], Post founded a general theory of recursively enumerable sets, which had its metamathematical source in questions about the decision problem for deducibility in formal systems. However, in centering attention on the notion of degree of unsolvability, Post set a course for his theory which has rarely returned to this source. Among exceptions to this tendency we may mention, as being closest to the problems considered here, the work of Kleene in [8] pp. 298–316, of Myhill in [10], and of Uspenskij in [15]. It is the purpose of this paper to make some further contributions towards bridging this gap.From a certain point of view, it may be argued that there is no real separation between metamathematics and the theory of recursively enumerable sets. For, if the notion of formal system is construed in a sufficiently wide sense, by taking as ‘axioms’ certain effectively found members of a set of ‘formal objects’ and as ‘proofs’ certain effectively found sequences of these objects, then the set of ‘provable statements’ of such a system may be identified, via Gödel's numbering technique, with a recursively enumerable set; and conversely, each recursively enumerable set is identified in this manner with some formal system (cf. [8] pp. 299–300 and 306). However, the pertinence of Post's theory is no longer clear when we turn to systems formalized within the more conventional framework of the first-order predicate calculus. It is just this restriction which serves to clarify the difference in spirit of the two disciplines.


1962 ◽  
Vol 27 (4) ◽  
pp. 383-390 ◽  
Author(s):  
S. Feferman ◽  
C. Spector

We deal in the following with certain theories S, by which we mean sets of sentences closed under logical deduction. The basic logic is understood to be the classical one, but we place no restriction on the orders of the variables to be used. However, we do assume that we can at least express certain notions from classical first-order number theory within these theories. In particular, there should correspond to each primitive recursive function ξ a formula φ(χ), where ‘x’ is a variable ranging over natural numbers, such that for each numeral ñ, φ(ñ) expresses in the language of S that ξ(η) = 0. Such formulas, when obtained say by the Gödel method of eliminating primitive recursive definitions in favor of arithmetical definitions in +. ·. are called PR-formulas (cf. [1] §2 (C)).


1995 ◽  
Vol 2 (36) ◽  
Author(s):  
Sten Agerholm

This paper presents an approach to the problem of introducing<br />non-primitive recursive function definitions in higher order logic. A<br />recursive specification is translated into a domain theory version, where<br />the recursive calls are treated as potentially non-terminating. Once we<br />have proved termination, the original specification can be derived easily.<br />A collection of algorithms are presented which hide the domain theory<br />from a user. Hence, the derivation of a domain theory specification<br />has been automated completely, and for well-founded recursive function<br />specifications the process of deriving the original specification from the<br />domain theory one has been automated as well, though a user must<br />supply a well-founded relation and prove certain termination properties<br />of the specification. There are constructions for building well-founded<br />relations easily.


Sign in / Sign up

Export Citation Format

Share Document