scholarly journals THE NEAT EMBEDDING PROBLEM FOR ALGEBRAS OTHER THAN CYLINDRIC ALGEBRAS AND FOR INFINITE DIMENSIONS

2014 ◽  
Vol 79 (01) ◽  
pp. 208-222 ◽  
Author(s):  
ROBIN HIRSCH ◽  
TAREK SAYED AHMED

Abstract Hirsch and Hodkinson proved, for $3 \le m < \omega $ and any $k < \omega $ , that the class $SNr_m {\bf{CA}}_{m + k + 1} $ is strictly contained in $SNr_m {\bf{CA}}_{m + k} $ and if $k \ge 1$ then the former class cannot be defined by any finite set of first-order formulas, within the latter class. We generalize this result to the following algebras of m-ary relations for which the neat reduct operator $_m $ is meaningful: polyadic algebras with or without equality and substitution algebras. We also generalize this result to allow the case where m is an infinite ordinal, using quasipolyadic algebras in place of polyadic algebras (with or without equality).

1972 ◽  
Vol 37 (4) ◽  
pp. 646-656 ◽  
Author(s):  
Daniel B. Demaree

It is well known that the laws of logic governing the sentence connectives—“and”, “or”, “not”, etc.—can be expressed by means of equations in the theory of Boolean algebras. The task of providing a similar algebraic setting for the full first-order predicate logic is the primary concern of algebraic logicians. The best-known efforts in this direction are the polyadic algebras of Halmos (cf. [2]) and the cylindric algebras of Tarski (cf. [3]), both of which may be described as Boolean algebras with infinitely many additional operations. In particular, there is a primitive operator, cκ, corresponding to each quantification, ∃υκ. In this paper we explore a version of algebraic logic conceived by A. H. Copeland, Sr., and described in [1], which has this advantage: All operators are generated from a finite set of primitive operations.Following the theory of cylindric algebras, we introduce, in the natural way, the classes of Copeland set algebras (SCpA), representable Copeland algebras (RCpA), and Copeland algebras of formulas. Playing a central role in the discussion is the set, Γ, of all equations holding in every set algebra. The reason for this is that the operations in a set algebra reflect the notion of satisfaction of a formula in a model, and hence an equation expresses the fact that two formulas are satisfied by the same sequences of objects in the model. Thus to say that an equation holds in every set algebra is to assert that a certain pair of formulas are logically equivalent.


2018 ◽  
Vol 83 (04) ◽  
pp. 1595-1609 ◽  
Author(s):  
STEVEN GIVANT ◽  
HAJNAL ANDRÉKA

AbstractGivant [6] generalized the notion of an atomic pair-dense relation algebra from Maddux [13] by defining the notion of a measurable relation algebra, that is to say, a relation algebra in which the identity element is a sum of atoms that can be measured in the sense that the “size” of each such atom can be defined in an intuitive and reasonable way (within the framework of the first-order theory of relation algebras). In Andréka--Givant [2], a large class of examples of such algebras is constructed from systems of groups, coordinated systems of isomorphisms between quotients of the groups, and systems of cosets that are used to “shift” the operation of relative multiplication. In Givant--Andréka [8], it is shown that the class of these full coset relation algebras is adequate to the task of describing all measurable relation algebras in the sense that every atomic and complete measurable relation algebra is isomorphic to a full coset relation algebra.Call an algebra $\mathfrak{A}$ a coset relation algebra if $\mathfrak{A}$ is embeddable into some full coset relation algebra. In the present article, it is shown that the class of coset relation algebras is equationally axiomatizable (that is to say, it is a variety), but that no finite set of sentences suffices to axiomatize the class (that is to say, the class is not finitely axiomatizable).


1998 ◽  
Vol 63 (1) ◽  
pp. 163-184 ◽  
Author(s):  
Hajnal Andréka ◽  
Robert Goldblatt ◽  
István Németi

This paper explores algebraic aspects of two modifications of the usual account of first-order quantifiers.Standard first-order quantificational logic is modelled algebraically by cylindric algebras. Prime examples of these are algebras whose members are sets of sequences: given a first-order model U for a language that is based on the set {υκ: κ < α} of variables, each formula φ is represented by the setof all those α-length sequences x = 〈xκ: κ < α〉 that satisfy φ in U. Such a sequence provides a value-assignment to the variables (υκ is assigned value xκ), but it may also be viewed geometrically as a point in the α-dimensional Cartesian spaceαU of all α-length sequences whose terms come from the underlying set U of U. Then existential quantification is represented by the operation of cylindrification. To explain this, define a binary relation Tκ on sequences by putting xTκy if and only if x and y differ at most at their κth coordinate, i.e.,Then for any set X ⊆ αU, the setis the “cylinder” generated by translation of X parallel to the κth coordinate axis in αU. Given the standard semantics for the existential quantifier ∃υκ asit is evident that


1954 ◽  
Vol 19 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Theodore Hailperin

Hilbert and Ackermann ([1], p. 107) define a first order axiom system as one in which the axioms contain one or more predicate constants, but no predicate variables. Here “axiom” refers to the specific subject-matter axioms and not to the rules of the restricted predicate calculus (quantification theory), which rules are presupposed for each first-order system. It is pointed out by them that an exception could be made for the predicate of identity; for the axiom scheme for this predicate, namelywhich has in (b) the variable predicate F, could nevertheless be replaced, in any given first-order system, by a finite set of axioms without predicate variables. Thus, for example, if Φ[x, y) is the one constant predicate of such a system then PId(b) could be replaced byThus one postulates, in addition to the reflexivity, symmetry, and transitivity of identity, the substitutivity of identical entities in each of the possible “atomic” contexts of a variable (occurrences in the primitive predicates). In this method of introducing identity it has to be taken as an additional primitive predicate and further axioms are consequently needed. In such a system having PId(a), (b1)−(b3) as axioms, the scheme PId(b) can be derived as a meta-theorem of the system, F(x) then being any formula of the system.


1989 ◽  
Vol 54 (3) ◽  
pp. 951-974 ◽  
Author(s):  
Roger D. Maddux

AbstractThe set of equations which use only one variable and hold in all representable relation algebras cannot be derived from any finite set of equations true in all representable relation algebras. Similar results hold for cylindric algebras and for logic with finitely many variables. The main tools are a construction of nonrepresentable one-generated relation algebras, a method for obtaining cylindric algebras from relation algebras, and the use of relation algebras in defining algebraic semantics for first-order logic.


2021 ◽  
Vol 82 (2) ◽  
Author(s):  
Robin Hirsch ◽  
Jaš Šemrl

AbstractThe motivation for using demonic calculus for binary relations stems from the behaviour of demonic turing machines, when modelled relationally. Relational composition (; ) models sequential runs of two programs and demonic refinement ($$\sqsubseteq $$ ⊑ ) arises from the partial order given by modeling demonic choice ($$\sqcup $$ ⊔ ) of programs (see below for the formal relational definitions). We prove that the class $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) of abstract $$(\le , \circ )$$ ( ≤ , ∘ ) structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $$(\le , \circ )$$ ( ≤ , ∘ ) formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $$R(\sqsubseteq , ;)$$ R ( ⊑ , ; ) . We prove that a finite representable $$(\le , \circ )$$ ( ≤ , ∘ ) structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representation property holds for finite structures.


2014 ◽  
Vol 24 (1) ◽  
pp. 195-215
Author(s):  
JEFFREY GAITHER ◽  
GUY LOUCHARD ◽  
STEPHAN WAGNER ◽  
MARK DANIEL WARD

We analyse the first-order asymptotic growth of \[ a_{n}=\int_{0}^{1}\prod_{j=1}^{n}4\sin^{2}(\pi jx)\, dx. \] The integer an appears as the main term in a weighted average of the number of orbits in a particular quasihyperbolic automorphism of a 2n-torus, which has applications to ergodic and analytic number theory. The combinatorial structure of an is also of interest, as the ‘signed’ number of ways in which 0 can be represented as the sum of ϵjj for −n ≤ j ≤ n (with j ≠ 0), with ϵj ∈ {0, 1}. Our result answers a question of Thomas Ward (no relation to the fourth author) and confirms a conjecture of Robert Israel and Steven Finch.


1995 ◽  
Vol 15 (1) ◽  
pp. 77-97 ◽  
Author(s):  
Irene Hueter ◽  
Steven P. Lalley

Let A1, A2,…,Ak be a finite set of contractive, affine, invertible self-mappings of R2. A compact subset Λ of R2 is said to be self-affine with affinitiesA1, A2,…,Ak ifIt is known [8] that for any such set of contractive affine mappings there is a unique (compact) SA set with these affinities. When the affine mappings A1, A2,…,Ak are similarity transformations, the set Λ is said to be self-similar. Self-similar sets are well understood, at least when the images Ai(Λ) have ‘small’ overlap: there is a simple and explicit formula for the Hausdorff and box dimensions [12, 10]; these are always equal; and the δ-dimensional Hausdorff measure of such a set (where δ is the Hausdorff dimension) is always positive and finite.


2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


Sign in / Sign up

Export Citation Format

Share Document