The Baire category theorem and cardinals of countable cofinality
Keyword(s):
The Real
◽
AbstractLet κB be the least cardinal for which the Baire category theorem fails for the real line R. Thus κB is the least κ such that the real line can be covered by κ many nowhere dense sets. It is shown that κB cannot have countable cofinality. On the other hand it is consistent that the corresponding cardinal for 2ω1 be ℵω. Similar questions are considered for the ideal of measure zero sets, other ω1, saturated ideals, and the ideal of zero-dimensional subsets of Rω1.