Theories with exactly three countable models and theories with algebraic prime models

1980 ◽  
Vol 45 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Anand Pillay

We prove first that if T is a countable complete theory with n(T), the number of countable models of T, equal to three, then T is similar to the Ehrenfeucht example of such a theory. Woodrow [4] showed that if T is in the same language as the Ehrenfeucht example, T has elimination of quantifiers, and n(T) = 3 then T is very much like this example. All known examples of theories T with n(T) finite and greater than one are based on the Ehrenfeucht example. We feel that such theories are a pathological case. Our second theorem strengthens the main result of [2]. The theorem in the present paper says that if T is a countable theory which has a model in which all the elements of some infinite definable set are algebraic of uniformly bounded degree, then n(T) ≥ 4. It is known [3] that if n(T) > 1, then n(T) > 3, so our result is the first nontrivial step towards proving that n(T) ≥ ℵ0. We would also like, of course, to prove the result without the uniform bound on the finite degrees of the elements in the subset.Theorem 2.1 is included in the author's Ph. D. thesis, as is a weaker version of Theorem 3.7. Thanks are due to Harry Simmons for his suggestions concerning the presentation of the material, and to Wilfrid Hodges for his advice while I was a Ph. D. student.


1985 ◽  
Vol 50 (4) ◽  
pp. 973-982 ◽  
Author(s):  
Daniel Lascar

§I. In 1961, R. L. Vaught ([V]) asked if one could prove, without the continuum hypothesis, that there exists a countable complete theory with exactly ℵ1 isomorphism types of countable models. The following statement is known as Vaught conjecture:Let T be a countable theory. If T has uncountably many countable models, then T hascountable models.More than twenty years later, this question is still open. Many papers have been written on the question: see for example [HM], [M1], [M2] and [St]. In the opinion of many people, it is a major problem in model theory.Of course, I cannot say what Vaught had in mind when he asked the question. I just want to explain here what meaning I personally see to this problem. In particular, I will not speak about the topological Vaught conjecture, which is quite another issue.I suppose that the first question I shall have to face is the following: “Why on earth are you interested in the number of countable models—particularly since the whole question disappears if we assume the continuum hypothesis?” The answer is simply that I am not interested in the number of countable models, nor in the number of models in any cardinality, as a matter of fact. An explanation is due here; it will be a little technical and it will rest upon two names: Scott (sentences) and Morley (theorem).



1978 ◽  
Vol 43 (3) ◽  
pp. 492-496 ◽  
Author(s):  
Anand Pillay

We prove that a countable complete theory whose prime model has an infinite definable subset, all of whose elements are named, has at least four countable models up to isomorphism. The motivation for this is the conjecture that a countable theory with a minimal model has infinitely many countable models. In this connection we first prove that a minimal prime model A has an expansion by a finite number of constants A′ such that the set of algebraic elements of A′ contains an infinite definable subset.We note that our main conjecture strengthens the Baldwin–Lachlan theorem. We also note that due to Vaught's result that a countable theory cannot have exactly two countable models, the weakest possible nontrivial result for a non-ℵ0-categorical theory is that it has at least four countable models.§1. Notation and preliminaries. Our notation follows Chang and Keisler [1], except that we denote models by A, B, etc. We use the same symbol to refer to the universe of a model. Models we refer to are always in a countable language. For T a countable complete theory we let n(T) be the number of countable models of T up to isomorphism. ∃n means ‘there are exactly n’.



2019 ◽  
Vol 35 (3) ◽  
pp. 1373-1392 ◽  
Author(s):  
Dong Ding ◽  
Axel Gandy ◽  
Georg Hahn

Abstract We consider a statistical test whose p value can only be approximated using Monte Carlo simulations. We are interested in deciding whether the p value for an observed data set lies above or below a given threshold such as 5%. We want to ensure that the resampling risk, the probability of the (Monte Carlo) decision being different from the true decision, is uniformly bounded. This article introduces a simple open-ended method with this property, the confidence sequence method (CSM). We compare our approach to another algorithm, SIMCTEST, which also guarantees an (asymptotic) uniform bound on the resampling risk, as well as to other Monte Carlo procedures without a uniform bound. CSM is free of tuning parameters and conservative. It has the same theoretical guarantee as SIMCTEST and, in many settings, similar stopping boundaries. As it is much simpler than other methods, CSM is a useful method for practical applications.



1975 ◽  
Vol 40 (3) ◽  
pp. 419-438 ◽  
Author(s):  
Daniel Andler

The study of countable theories categorical in some uncountable power was initiated by Łoś and Vaught and developed in two stages. First, Morley proved (1962) that a countable theory categorical in some uncountable power is categorical in every uncountable power, a conjecture of Łoś. Second, Baldwin and Lachlan confirmed (1969) Vaught's conjecture that a countable theory categorical in some uncountable power has either one or countably many isomorphism types of countable models. That result was obtained by pursuing a line of research developed by Marsh (1966). For certain well-behaved theories, which he called strongly minimal, Marsh's method yielded a simple proof of Łoś's conjecture and settled Vaught's conjecture.In recent years efforts have been made to extend these results to uncountable theories. The generalized Łoś conjecture states that a theory T categorical in some power greater than ∣T∣ is categorical in every such power. It was settled by Shelah (1970). Shelah then raised the question of the models in power ∣T∣ = ℵα of a theory T categorical in ∣T∣+, conjecturing in [S3] that there are exactly ∣α∣ + ℵ0 such models, up to isomorphism. This conjecture provided the initial motivation for the present work. We define and study semi-minimal theories analogous in some ways to Marsh's strongly minimal (countable) theories. We describe the models of a semi-minimal theory T which contain an infinite indiscernible set. Besides throwing some light on Shelah's conjecture, our method gives simple proofs of the Łoś conjecture and of the Morley conjecture on categoricity in ∣T∣, in the case of a semi-minimal theory T. Other results as well as some examples are provided.



1981 ◽  
Vol 20 (1) ◽  
pp. 48-65
Author(s):  
T. G. Mustafin


1971 ◽  
Vol 36 (3) ◽  
pp. 439-440 ◽  
Author(s):  
Joseph G. Rosenstein

In [2] Vaught showed that if T is a complete theory formalized in the first-order predicate calculus, then it is not possible for T to have exactly (up to isomorphism) two countable models. In this note we extend his methods to obtain a theorem which implies the above.First some definitions. We define Fn(T) to be the set of well-formed formulas (wffs) in the language of T whose free variables are among x1 x2, …, xn. An n-type of T is a maximal consistent set of wffs of Fn(T); equivalently, a subset P of Fn(T) is an n-type of T if there is a model M of T and elements a1, a2, …, an of M such that M ⊧ ϕ(a1, a2, …, an) for every ϕ ∈ P. In the latter case we say that 〈a1, a2, …, an〉 ony realizes P in M. Every set of wffs of Fn(T) which is consistent with T can be extended to an n-type of T.



2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Bao Wang ◽  
Weiguo Yang ◽  
Zhiyan Shi ◽  
Qingpei Zang

We study the strong law of large numbers for the frequencies of occurrence of states and ordered couples of states for countable Markov chains indexed by an infinite tree with uniformly bounded degree, which extends the corresponding results of countable Markov chains indexed by a Cayley tree and generalizes the relative results of finite Markov chains indexed by a uniformly bounded tree.



1983 ◽  
Vol 48 (3) ◽  
pp. 539-541 ◽  
Author(s):  
Libo Lo

The number of homogeneous models has been studied in [1] and other papers. But the number of countable homogeneous models of a countable theory T is not determined when dropping the GCH. Morley in [2] proves that if a countable theory T has more than ℵ1 nonisomorphic countable models, then it has such models. He conjectures that if a countable theory T has more than ℵ0 nonisomorphic countable models, then it has such models. In this paper we show that if a countable theory T has more than ℵ0 nonisomorphic countable homogeneous models, then it has such models.We adopt the conventions in [1]–[3]. Throughout the paper T is a theory and the language of T is denoted by L which is countable.Lemma 1. If a theory T has more than ℵ0types, then T hasnonisomorphic countable homogeneous models.Proof. Suppose that T has more than ℵ0 types. From [2, Corollary 2.4] T has types. Let σ be a Ttype with n variables, and T′ = T ⋃ {σ(c1, …, cn)}, where c1, …, cn are new constants. T′ is consistent and has a countable model (, a1, …, an). From [3, Theorem 3.2.8] the reduced model has a countable homogeneous elementary extension . σ is realized in . This shows that every type σ is realized in at least one countable homogeneous model of T. But each countable model can realize at most ℵ0 types. Hence T has at least countable homogeneous models. On the other hand, a countable theory can have at most nonisomorphic countable models. Hence the number of nonisomorphic countable homogeneous models of T is .In the following, we shall use the languages Lα (α = 0, 1, 2) defined in [2]. We give a brief description of them. For a countable theory T, let K be the class of all models of T. L = L0 is countable.



Sign in / Sign up

Export Citation Format

Share Document