A note on a theorem of Vaught

1971 ◽  
Vol 36 (3) ◽  
pp. 439-440 ◽  
Author(s):  
Joseph G. Rosenstein

In [2] Vaught showed that if T is a complete theory formalized in the first-order predicate calculus, then it is not possible for T to have exactly (up to isomorphism) two countable models. In this note we extend his methods to obtain a theorem which implies the above.First some definitions. We define Fn(T) to be the set of well-formed formulas (wffs) in the language of T whose free variables are among x1 x2, …, xn. An n-type of T is a maximal consistent set of wffs of Fn(T); equivalently, a subset P of Fn(T) is an n-type of T if there is a model M of T and elements a1, a2, …, an of M such that M ⊧ ϕ(a1, a2, …, an) for every ϕ ∈ P. In the latter case we say that 〈a1, a2, …, an〉 ony realizes P in M. Every set of wffs of Fn(T) which is consistent with T can be extended to an n-type of T.

1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1975 ◽  
Vol 40 (2) ◽  
pp. 151-158 ◽  
Author(s):  
John Lake

Our results concern the natural models of Ackermann-type set theories, but they can also be viewed as results about the definability of ordinals in certain sets.Ackermann's set theory A was introduced in [1] and it is now formulated in the first order predicate calculus with identity, using ∈ for membership and an individual constant V for the class of all sets. We use the letters ϕ, χ, θ, and χ to stand for formulae which do not contain V and capital Greek letters to stand for any formulae. Then, the axioms of A* are the universal closures ofwhere all the free variables are shown in A4 and z does not occur in the Θ of A2. A is the theory A* − A5.Most of our notation is standard (for instance, α, β, γ, δ, κ, λ, ξ are variables ranging over ordinals) and, in general, we follow the notation of [7]. When x ⊆ Rα, we use Df(Rα, x) for the set of those elements of Rα which are definable in 〈Rα, ∈〉, using a first order ∈-formula and parameters from x.We refer the reader to [7] for an outline of the results which are known about A, but we shall summarise those facts which are frequently used in this paper.


1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1970 ◽  
Vol 38 ◽  
pp. 145-152
Author(s):  
Akira Nakamura

The purpose of this paper is to present a propositional calculus whose decision problem is recursively unsolvable. The paper is based on the following ideas: (1) Using Löwenheim-Skolem’s Theorem and Surányi’s Reduction Theorem, we will construct an infinitely many-valued propositional calculus corresponding to the first-order predicate calculus.(2) It is well known that the decision problem of the first-order predicate calculus is recursively unsolvable.(3) Thus it will be shown that the decision problem of the infinitely many-valued propositional calculus is recursively unsolvable.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


1994 ◽  
Vol 59 (1) ◽  
pp. 106-112 ◽  
Author(s):  
Julia F. Knight

In what follows, L is a recursive language. The structures to be considered are L-structures with universe named by constants from ω. A structure is recursive A if the open diagram D() is recursive. Lerman and Schmerl [L-S] proved the following result.Let T be an ℵ0-categorical elementary first-order theory. Suppose that for all n, , and T is arithmetical. Then T has a recursive model.The aim of this paper is to extend Theorem 0.1. Stating the extension requires some terminology. Consider finitary formulas with symbols from L and sometimes extra constants from ω. For each n ∈ ω, the Σn and Πn formulas are as usual. Then Bnformulas are Boolean combinations of Σn formulas. For an L-structure , Dn() denotes the set of Bn sentences in the complete diagram Dc(). A complete Σn theory is a maximal consistent set of ΣnL-sentences. We may write φ(x), or Γ(x), to indicate that the free variables of the formula φ, or the set Γ, are among those in x. A complete Bn type for x is a maximal consistent set Γ(x) of Bn formulas with just the free variables x.If T is ℵ0-categorical, then for each x only finitely many complete types Γ(x) are consistent with T. While Lerman and Schmerl stated their result just for ℵ0-categorical theories, essentially the same proof yields the following.Theorem 0.2. Let T be a consistent, complete theory such that for all n andx, only finitely many complete Bn types Γ(x) are consistent with T.


Sign in / Sign up

Export Citation Format

Share Document