Number of countable models of a countable complete theory

1981 ◽  
Vol 20 (1) ◽  
pp. 48-65
Author(s):  
T. G. Mustafin

1985 ◽  
Vol 50 (4) ◽  
pp. 973-982 ◽  
Author(s):  
Daniel Lascar

§I. In 1961, R. L. Vaught ([V]) asked if one could prove, without the continuum hypothesis, that there exists a countable complete theory with exactly ℵ1 isomorphism types of countable models. The following statement is known as Vaught conjecture:Let T be a countable theory. If T has uncountably many countable models, then T hascountable models.More than twenty years later, this question is still open. Many papers have been written on the question: see for example [HM], [M1], [M2] and [St]. In the opinion of many people, it is a major problem in model theory.Of course, I cannot say what Vaught had in mind when he asked the question. I just want to explain here what meaning I personally see to this problem. In particular, I will not speak about the topological Vaught conjecture, which is quite another issue.I suppose that the first question I shall have to face is the following: “Why on earth are you interested in the number of countable models—particularly since the whole question disappears if we assume the continuum hypothesis?” The answer is simply that I am not interested in the number of countable models, nor in the number of models in any cardinality, as a matter of fact. An explanation is due here; it will be a little technical and it will rest upon two names: Scott (sentences) and Morley (theorem).



1971 ◽  
Vol 36 (3) ◽  
pp. 439-440 ◽  
Author(s):  
Joseph G. Rosenstein

In [2] Vaught showed that if T is a complete theory formalized in the first-order predicate calculus, then it is not possible for T to have exactly (up to isomorphism) two countable models. In this note we extend his methods to obtain a theorem which implies the above.First some definitions. We define Fn(T) to be the set of well-formed formulas (wffs) in the language of T whose free variables are among x1 x2, …, xn. An n-type of T is a maximal consistent set of wffs of Fn(T); equivalently, a subset P of Fn(T) is an n-type of T if there is a model M of T and elements a1, a2, …, an of M such that M ⊧ ϕ(a1, a2, …, an) for every ϕ ∈ P. In the latter case we say that 〈a1, a2, …, an〉 ony realizes P in M. Every set of wffs of Fn(T) which is consistent with T can be extended to an n-type of T.



1980 ◽  
Vol 45 (2) ◽  
pp. 302-310 ◽  
Author(s):  
Anand Pillay

We prove first that if T is a countable complete theory with n(T), the number of countable models of T, equal to three, then T is similar to the Ehrenfeucht example of such a theory. Woodrow [4] showed that if T is in the same language as the Ehrenfeucht example, T has elimination of quantifiers, and n(T) = 3 then T is very much like this example. All known examples of theories T with n(T) finite and greater than one are based on the Ehrenfeucht example. We feel that such theories are a pathological case. Our second theorem strengthens the main result of [2]. The theorem in the present paper says that if T is a countable theory which has a model in which all the elements of some infinite definable set are algebraic of uniformly bounded degree, then n(T) ≥ 4. It is known [3] that if n(T) > 1, then n(T) > 3, so our result is the first nontrivial step towards proving that n(T) ≥ ℵ0. We would also like, of course, to prove the result without the uniform bound on the finite degrees of the elements in the subset.Theorem 2.1 is included in the author's Ph. D. thesis, as is a weaker version of Theorem 3.7. Thanks are due to Harry Simmons for his suggestions concerning the presentation of the material, and to Wilfrid Hodges for his advice while I was a Ph. D. student.



1978 ◽  
Vol 43 (3) ◽  
pp. 492-496 ◽  
Author(s):  
Anand Pillay

We prove that a countable complete theory whose prime model has an infinite definable subset, all of whose elements are named, has at least four countable models up to isomorphism. The motivation for this is the conjecture that a countable theory with a minimal model has infinitely many countable models. In this connection we first prove that a minimal prime model A has an expansion by a finite number of constants A′ such that the set of algebraic elements of A′ contains an infinite definable subset.We note that our main conjecture strengthens the Baldwin–Lachlan theorem. We also note that due to Vaught's result that a countable theory cannot have exactly two countable models, the weakest possible nontrivial result for a non-ℵ0-categorical theory is that it has at least four countable models.§1. Notation and preliminaries. Our notation follows Chang and Keisler [1], except that we denote models by A, B, etc. We use the same symbol to refer to the universe of a model. Models we refer to are always in a countable language. For T a countable complete theory we let n(T) be the number of countable models of T up to isomorphism. ∃n means ‘there are exactly n’.



1977 ◽  
Vol 42 (1) ◽  
pp. 29-32
Author(s):  
Ernest Snapper

The purpose of this paper is to introduce the notion of “omitting models” and to derive a very natural theorem concerning it (Theorem 1). A corollary of this theorem is the remarkable theorem of Vaught [3] which states that a countable complete theory cannot have precisely two nonisomorphic countable models. In fact, we show that our theorem implies Rosenstein's theorem [2] which, in turn, implies Vaught's theorem.T stands for a countable complete theory whose (countable) language is denoted by L. Following [1], a countably homogeneous model of T is a countable model of T with the property that, for any two n-tuples a1, …, an and b1,…,bn of the universe of whose types are the same, there is an automorphism of which maps ai, on bi, for i = 1, …, n [1, p. 129 and Proposition 3.2.9, p. 131]. “Homogeneous model” always means “countably homogeneous model.” “Type of T” always stands for “n-type of T” where n ≥ s 0, i.e., for the type of some n-tuple of individuals of the universe of some model of T. We often use that two homogeneous models which realize the same types are isomorphic [1, Proposition 3.2.9, p. 131].It is well known that every type of T is realized by at least one countable model of T. The main definition of this paper is:Definition 1. A set of countable models of T is omissible or “may be omitted” if every type of T is realized by at least one countable model of T which is not isomorphic to a model in the set.The main theorem of the paper is:Theorem 1. If a countable complete theory is not ω-categorical, every finite set of its homogeneous models may be omitted.The theorem is proved in §1 and in §2 it is shown how Vaught's and Rosenstein's theorems follow from it. §3 discusses some general aspects of omitting models.



1989 ◽  
Vol 54 (1) ◽  
pp. 264-270 ◽  
Author(s):  
Terrence Millar

An Ehrenfeucht theory is a complete first order theory with exactly n countable models up to isomorphism, 1 < n < ω. Numerous results have emerged regarding these theories ([1]–[15]). A general question in model theory is whether or not the number of countable models of a complete theory can be different than the number of countable models of a complete consistent extension of the theory by finitely many constant symbols. Examples are known of Ehrenfeucht theories that have complete extensions by finitely many constant symbols such that the extensions fail to be Ehrenfeucht ([4], [8], [13]). These examples are easily modified to allow finite increases in the number of countable models.This paper contains examples in the other direction—complete theories that have consistent extensions by finitely many constant symbols such that the extensions have fewer countable models. This answers affirmatively a question raised by, among others, Peretyat'kin [8]. The first example will be an Ehrenfeucht theory with exactly four countable models with an extension by a constant symbol that has only three countable models. The second example will be a complete theory that is not Ehrenfeucht, but which has an extension by a constant symbol that is Ehrenfeucht. The notational conventions for this paper are standard.Peretyat'kin introduced the theory of a dense binary branching tree with a meet operator [7]. Dense ω-branching trees have also proven useful [5], [11]. Both of the Theories that will be constructed make use of dense ω-branching trees.



1981 ◽  
Vol 46 (2) ◽  
pp. 397-411 ◽  
Author(s):  
Terrence Millar

In this paper we investigate the relationship between the number of countable and decidable models of a complete theory. The number of decidable models will be determined in two ways, in §1 with respect to abstract isomorphism type, and in §2 with respect to recursive isomorphism type.Definition 1. A complete theory is (α, β) if the number of countable models of T, up to abstract isomorphism, is β, and similarly the number of decidable models of T is α.Definition 2. A model is ω-decidable if ∣∣= ω and for an effective listing {θn∣n < ω} of all sentences in the language of Th() augmented by new constant symbols i*, i < ω, {n ∣〈, i〉i<ω ⊨ θn} is recursive, where i interprets i* (in these terms, is decidable if is abstractly isomorphic to an ω-decidable model).Definition 3. A complete theory is (α, β)r if it is (γ, β) for some γ and it has exactly αω-decidable models up to recursive isomorphism.Specifically we will show in §1 that there is a (2, ω) theory, and in §2 that although there is a (2, 2ω) theory, there is no (2, β)r theory for any β, β < 2ω.



1979 ◽  
Vol 44 (3) ◽  
pp. 307-312 ◽  
Author(s):  
Terrence S. Millar

A well-known result of Vaught's is that no complete theory has exactly two nonisomorphic countable models. The main result of this paper is that there is a complete decidable theory with exactly two nonisomorphic decidable models.A model is decidable if it has a decidable satisfaction predicate. To be more precise, let T be a decidable theory, let {θn∣n < ω} be an effective enumeration of all formulas in L(T), and let be a countable model of T. For any indexing E = {ai∣ i < ω} of ∣∣, and any formula ϕ ∈ L(T), let ‘ϕE’ denote the result of substituting ‘ai’ for every free occurrence of ‘xi’ in ϕ, i < ω. Then is decidable just in case, for some indexing E of ∣∣, {n ∣ ⊨ θnE} is a recursive set of integers. It is easy to show that the decidability of a model does not depend on the choice of the effective enumeration of the formulas in L(T); we omit details. By a simple ‘effectivization’ of Henkin's proof of the completeness theorem (see Chang [1]) we haveFact 1. Every decidable consistent theory has a decidable model.Assume next that T is a complete decidable theory and {θn ∣ n < ω} is an effective enumeration of all formulas of L(T).



2019 ◽  
Author(s):  
Muhammad Ali

This paper proposes a Gadenkan experiment named “Observer’s Dilemma”, to investigate the probabilistic nature of observable phenomena. It has been reasoned that probabilistic nature in, otherwise uniquely deterministic phenomena can be introduced due to lack of information of underlying governing laws. Through theoretical consequences of the experiment, concepts of ‘Absolute Complete’ and ‘Observably Complete” theories have been introduced. Furthermore, nature of reality being ‘absolute’ and ‘observable’ have been discussed along with the possibility of multiple realities being true for observer. In addition, certain aspects of quantum mechanics have been interpreted. It has been argued that quantum mechanics is an ‘observably complete’ theory and its nature is to give probabilistic predictions. Lastly, it has been argued that “Everettian - Many world” interpretation of quantum mechanics is very real and true in the framework of ‘observable nature of reality’, for humans.



Author(s):  
Jonathan Dancy

This chapter considers how to locate moral reasoning in terms of the structures that have emerged so far. It does not attempt to write a complete theory of moral thought. Its main purpose is rather to reassure us that moral reasoning—which might seem to be somehow both practical and theoretical at once—can be perfectly well handled using the tools developed in previous chapters. It also considers the question how we are to explain practical reasoning—and practical reasons more generally—by contrast with the explanation of theoretical reasons and reasoning offered in Chapter 4. This leads us to the first appearance of the Primacy of the Practical. The second appearance concerns reasons to intend.



Sign in / Sign up

Export Citation Format

Share Document