On homogeneity and definability in the first-order theory of the Turing degrees

1982 ◽  
Vol 47 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Richard A. Shore

Relativization—the principle that says one can carry over proofs and theorems about partial recursive functions and Turing degrees to functions partial recursive in any given set A and the Turing degrees of sets in which A is recursive—is a pervasive phenomenon in recursion theory. It led H. Rogers, Jr. [15] to ask if, for every degree d, (≥ d), the partial ordering of Turing degrees above d, is isomorphic to all the degrees . We showed in Shore [17] that this homogeneity conjecture is false. More specifically we proved that if, for some n, the degree of Kleene's (the complete set) is recursive in d(n) then ≇ (≤ d). The key ingredient of the proof was a new version of a result from Nerode and Shore [13] (hereafter NS I) that any isomorphism φ: → (≥ d) must be the identity on some cone, i.e., there is an a called the base of the cone such that b ≥ a ⇒ φ(b) = b. This result was combined with information about minimal covers from Jockusch and Soare [8] and Harrington and Kechris [3] to derive a contradiction from the existence of such an isomorphism if deg() ≤ d(n).

1977 ◽  
Vol 42 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Jan Mycielski

We consider first-order logic only. A theory S will be called locally interpretable in a theory T if every theorem of S is interpretable in T. If S is locally interpretable in T and T is consistent then S is consistent. Most known relative consistency proofs can be viewed as local interpretations. The classic examples are the cartesian interpretation of the elementary theorems of Euclidean n-dimensional geometry into the first-order theory of real closed fields, the interpretation of the arithmetic of integers (rational numbers) into the arithmetic of positive integers, the interpretation of ZF + (V = L) into ZF, the interpretation of analysis into ZFC, relative consistency proofs by forcing, etc. Those interpretations are global. Under fairly general conditions local interpretability implies global interpretability; see Remarks (7), (8), and (9) below.We define the type (interpretability type) of a theory S to be the class of all theories T such that S is locally interpretable in T and vice versa. There happen to be such types and they are partially ordered by the relation of local interpretability. This partial ordering is of lattice type and has the following form:The lattice is distributive and complete and satisfies the infinite distributivity law of Brouwerian lattices:We do not know if the dual lawis true. We will show that the lattice is algebraic and that its compact elements form a sublattice and are precisely the types of finitely axiomatizable theories, and several other facts.


2018 ◽  
Vol 83 (3) ◽  
pp. 967-990
Author(s):  
GERHARD JÄGER ◽  
TIMOTEJ ROSEBROCK ◽  
SATO KENTARO

AbstractBON+ is an applicative theory and closely related to the first order parts of the standard systems of explicit mathematics. As such it is also a natural framework for abstract computations. In this article we analyze this aspect of BON+ more closely. First a point is made for introducing a new operation τN, called truncation, to obtain a natural formalization of partial recursive functions in our applicative framework. Then we introduce the operational versions of a series of notions that are all equivalent to semi-decidability in ordinary recursion theory on the natural numbers, and study their mutual relationships over BON+ with τN.


1993 ◽  
Vol 58 (2) ◽  
pp. 477-513 ◽  
Author(s):  
Andrea Cantini

AbstractThe aim of this paper is to introduce a formal system STW of self-referential truth, which extends the classical first-order theory of pure combinators with a truth predicate and certain approximation axioms. STW naturally embodies the mechanisms of generalpredicate application/abstractionona par withfunction application/abstraction; in addition, it allows non-trivial constructions, inspired by generalized recursion theory. As a consequence, STW provides a smooth inner model for Myhill's systems with levels of implication.


2009 ◽  
Vol 78 (4) ◽  
pp. 1189-1198
Author(s):  
Uri Andrews ◽  
Julia F. Knight

AbstractFor a countable structure , the spectrum is the set of Turing degrees of isomorphic copies of . For a complete elementary first order theory T, the spectrum is the set of Turing degrees of models of T. We answer a question from [1] by showing that there is an atomic theory T whose spectrum does not match the spectrum of any structure.


Computability ◽  
2019 ◽  
Vol 8 (3-4) ◽  
pp. 347-358
Author(s):  
Matthew Harrison-Trainor

2015 ◽  
Vol 57 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Peter Franek ◽  
Stefan Ratschan ◽  
Piotr Zgliczynski

Sign in / Sign up

Export Citation Format

Share Document