κ-Suslin logic

1978 ◽  
Vol 43 (4) ◽  
pp. 659-666
Author(s):  
Judy Green

An analogue of a theorem of Sierpinski about the classical operation () provides the motivation for studying κ-Suslin logic, an extension of Lκ+ω which is closed under a propositional connective based on (). This theorem is used to obtain a complete axiomatization for κ-Suslin logic and an upper bound on the κ-Suslin accessible ordinals (for κ = ω these results are due to Ellentuck [E]). It also yields a weak completeness theorem which we use to generalize a result of Barwise and Kunen [B-K] and show that the least ordinal not H(κ+) recursive is the least ordinal not κ-Suslin accessible.We assume familiarity with lectures 3, 4 and 10 of Keisler's Model theory for infinitary logic [Ke]. We use standard notation and terminology including the following.Lκ+ω is the logic closed under negation, finite quantification, and conjunction and disjunction over sets of formulas of cardinality at most κ. For κ singular, conjunctions and disjunctions over sets of cardinality κ can be replaced by conjunctions and disjunctions over sets of cardinality less than κ so that we can (and will in §2) assume the formation rules of Lκ+ω allow conjunctions and disjunctions only over sets of cardinality strictly less than κ whenever κ is singular.

1968 ◽  
Vol 33 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Richmond H. Thomason

In Kripke [8] the first-order intuitionjstic predicate calculus (without identity) is proved semantically complete with respect to a certain model theory, in the sense that every formula of this calculus is shown to be provable if and only if it is valid. Metatheorems of this sort are frequently called weak completeness theorems—the object of the present paper is to extend Kripke's result to obtain a strong completeness theorem for the intuitionistic predicate calculus of first order; i.e., we will show that a formula A of this calculus can be deduced from a set Γ of formulas if and only if Γ implies A. In notes 3 and 5, below, we will indicate how to account for identity, as well. Our proof of the completeness theorem employs techniques adapted from Henkin [6], and makes no use of semantic tableaux; this proof will also yield a Löwenheim-Skolem theorem for the modeling.


1974 ◽  
Vol 39 (3) ◽  
pp. 496-508 ◽  
Author(s):  
Michael Mortimer

This paper is concerned with extending some basic results from classical model theory to modal logic.In §1, we define the majority of terms used in the paper, and explain our notation. A full catalogue would be excessive, and we cite [3] and [7] as general references.Many papers on modal logic that have appeared are concerned with (i) introducing a new modal logic, and (ii) proving a weak completeness theorem for it. Theorem 1, in §2, in many cases allows us to conclude immediately that a strong completeness theorem holds for such a logic in languages of arbitrary cardinality. In particular, this is true of S4 with the Barcan formula.In §3 we strengthen Theorem 1 for a number of modal logics to deal with the satisfaction of several sets of sentences, and so obtain a realizing types theorem. Finally, an omitting types theorem, generalizing the result for classical logic (see [5]) is proved in §4.Several consequences of Theorem 1 are already to be found in the literature. [2] gives a proof of strong completeness in languages of arbitrary cardinality of various logics without the Barcan formula, and [8] for some logics in countable languages with it. In the latter case, the result for uncountable languages is cited, without proof, in [1], and there credited to Montague. Our proof was found independently.


Author(s):  
Tim Button ◽  
Sean Walsh

This chapter explores Leibniz's principle of the Identity of Indiscernibles. Model theory supplies us with the resources to distinguish between many different notions of indiscernibility; we can vary: (a) the primitive ideology (b) the background logic and (c) the grade of discernibility. We use these distinctions to discuss the possibility of singling-out “indiscernibles”. And we then use these to distinctions to explicate Leibniz's famous principle. While model theory allows us to make this principle precise, the sheer number of different precise versions of this principle made available by model theory can serve to mitigate some of the initial excitement of this principle. We round out the chapter with two technical topics: indiscernibility in infinitary logic, and the relation between indiscernibility, orders, and stability.


1963 ◽  
Vol 28 (1) ◽  
pp. 43-50 ◽  
Author(s):  
L. P. Belluce ◽  
C. C. Chang

This paper contains some results concerning the completeness of a first-order system of infinite valued logicThere are under consideration two distinct notions of completeness corresponding to the two notions of validity (see Definition 3) and strong validity (see Definition 4). Both notions of validity, whether based on the unit interval [0, 1] or based on linearly ordered MV-algebras, use the element 1 as the designated truth value. Originally, it was thought by many investigators in the field that one should be able to prove that the set of valid sentences is recursively enumerable. It was first proved by Rutledge in [9] that the set of valid sentences in the monadic first-order infinite valued logic is recursively enumerable.


1971 ◽  
Vol 36 (2) ◽  
pp. 332
Author(s):  
Bruno Scarpellini ◽  
L. P. Belluce ◽  
C. C. Chang

2006 ◽  
Vol 71 (3) ◽  
pp. 863-880 ◽  
Author(s):  
Petr Hájek ◽  
Petr Cintula

AbstractIn the last few decades many formal systems of fuzzy logics have been developed. Since the main differences between fuzzy and classical logics lie at the propositional level, the fuzzy predicate logics have developed more slowly (compared to the propositional ones). In this text we aim to promote interest in fuzzy predicate logics by contributing to the model theory of fuzzy predicate logics. First, we generalize the completeness theorem, then we use it to get results on conservative extensions of theories and on witnessed models.


2012 ◽  
Vol 20 (3) ◽  
pp. 227-234
Author(s):  
Mariusz Giero

Summary We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.


2021 ◽  
Author(s):  
◽  
Galym Akishev

<p>The object of study of the thesis is the notion of monadic bounded algebras (shortly, MBA's). These algebras are motivated by certain natural constructions in free (first-order) monadic logic and are related to free monadic logic in the same way as monadic algebras of P. Halmos to monadic logic (Chapter 1). Although MBA's come from logic, the present work is in algebra. Another important way of approaching MBA's is via bounded graphs, namely, the complex algebra of a bounded graph is an MBA and vice versa. The main results of Chapter 2 are two representation theorems: 1) every model is a basic MBA and every basic MBA is isomorphic to a model; 2) every MBA is isomorphic to a subdirect product of basic MBA's. As a consequence, every MBA is isomorphic to a subdirect product of models. This result is thought of as an algebraic version of semantical completeness theorem for free monadic logic. Chapter 3 entirely deals with MBA-varieties. It is proved by the method of filtration that every MBA-variety is generated by its finite special members. Using connections in terms of bounded morphisms among certain bounded graphs, it is shown that every MBA-variety is generated by at most three special (not necessarily finite) MBA's. After that each MBA-variety is equationally characterized. Chapter 4 considers finitely generated MBA's. We prove that every finitely generated MBA is finite (an upper bound on the number of elements is provided) and that the number of elements of a free MBA on a finite set achieves its upper bound. Lastly, a procedure for constructing a free MBA on any finite set is given.</p>


Sign in / Sign up

Export Citation Format

Share Document