Axiomatization of polynomial substitution algebras

1982 ◽  
Vol 47 (3) ◽  
pp. 481-492 ◽  
Author(s):  
Norman Feldman

The axiomatization of algebras of functions or partial functions under various operations has been studied by several authors. Menger [2] deals with the problem of axiomatizing the algebraic properties of 1-ary functions from the reals to the reals. He considers algebras with one of three binary operations corresponding to addition, multiplication or composition. This study is furthered by Schweizer and Sklar in [3]–[6]. In addition to the operations mentioned above they also introduce a partial ordering which corresponds to restriction of functions. In the second of these papers they give a set of axioms such that any system satisfying these axioms is order isomorphic to a concrete system of partial functions under composition and ordered by restriction. In [7] Schweizer and Sklar extend their work to the algebra of multiplace vector-valued functions. In [8] Whitlock studies abstract multiplaced function systems given by super-associative laws and shows that these systems are isomorphically embeddable in a concrete system of multiplaced functions where the operation on the functions is substitution of an m-ary function in an n-ary function.In this paper we consider the set of functions from Uα, the set of α-sequences, to U where a is an infinite ordinal. As opposed to the composition operations studied in the above works, we consider the composition operations *κ, for κ < α, in a narrow sense—the substitution of one function in the κth place of another. The algebras studied have the form ‹A, *κ, Vκ› κ<α where Vκ are the projection (selector) functions on the κth place. In particular, the polynomials over an algebra form such an algebra called a polynomial substitution algebra. In §6 we show that a first-order axiom system and a condition of local finiteness, given by Pinter in a talk at Berkeley in 1972 to characterize term substitution abgebras, also characterize these polynomial substitution algebras.


2017 ◽  
Vol 173 (2) ◽  
pp. 357-390 ◽  
Author(s):  
N. Dinh ◽  
M. A. Goberna ◽  
M. A. López ◽  
T. H. Mo


2001 ◽  
Vol 70 (3) ◽  
pp. 323-336 ◽  
Author(s):  
T. S. S. R. K. Rao ◽  
A. K. Roy

AbstractIn this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.



1997 ◽  
Vol 98 (1) ◽  
pp. 189-207 ◽  
Author(s):  
R. DeLaubenfels ◽  
Z. Huang ◽  
S. Wang ◽  
Y. Wang


2014 ◽  
Vol 57 (1) ◽  
pp. 17-82 ◽  
Author(s):  
TUOMAS P. HYTÖNEN ◽  
ANTTI V. VÄHÄKANGAS

AbstractWe extend the local non-homogeneous Tb theorem of Nazarov, Treil and Volberg to the setting of singular integrals with operator-valued kernel that act on vector-valued functions. Here, ‘vector-valued’ means ‘taking values in a function lattice with the UMD (unconditional martingale differences) property’. A similar extension (but for general UMD spaces rather than UMD lattices) of Nazarov-Treil-Volberg's global non-homogeneous Tb theorem was achieved earlier by the first author, and it has found applications in the work of Mayboroda and Volberg on square-functions and rectifiability. Our local version requires several elaborations of the previous techniques, and raises new questions about the limits of the vector-valued theory.



1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].





2005 ◽  
Vol 227 (2) ◽  
pp. 372-388 ◽  
Author(s):  
Miroslav Krbec ◽  
Hans-Jürgen Schmeisser


2013 ◽  
pp. 209-215
Author(s):  
John Vince




1986 ◽  
Vol 36 (2) ◽  
pp. 198-209
Author(s):  
S. K. Roy ◽  
N. D. Chakraborty


Sign in / Sign up

Export Citation Format

Share Document