composition operations
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
А.А. Афонин ◽  
А.С. Сулаков ◽  
М.Ш. Маамо

В настоящее время в связи со всевозрастающей степенью сложности проектирования, производства и эксплуатации летательных аппаратов все более важным направлением в области развития информационно-измерительных систем становится совершенствование существующих и разработка новых способов измерения параметров вибрации элементов механических конструкций летательных аппаратов. Целью данной работы является анализ возможности и перспективности построения системы для измерения вибраций элементов конструкции самолета на основе использования микромеханических инерциальных измерительных блоков в качестве основных виброметрических измерителей. При этом объектом исследования является система измерения параметров вибрации, а предметом – ее структура, состав, алгоритмы функционирования и ожидаемые точностные характеристики. Для достижения поставленной цели строится информационно-измерительная система на базе инерциальных приборов, а также датчиков для непосредственных измерений перемещений, используются численные и аналитические методы высшей математики и теоретической механики, методы теории случайных процессов и оптимального оценивания. В статье рассмотрены принципы построения такой системы на примере варианта системы измерения параметров вибраций крыла самолета, представлен краткий обзор существующих решений в предметной области и обоснована актуальность и целесообразность предложенного варианта технического решения. Приведены базовый состав и структура системы, описаны основные принципы ее работы, основанные на использовании данных датчиков перемещения, инерциальных измерителей и оптимального калмановского оценивания и коррекции. Показаны основные алгоритмы работы системы, включая алгоритмы ориентации и навигации, оценивания и коррекции при замкнуто-разомкнутой схеме включения оптимального фильтра Калмана, алгоритм вычисления параметров вибрации, представленыматематические модели ошибок основных измерителей системы, показаны полученные предварительные результаты имитационного моделирования, демонстрирующие работоспособность системы и ее ожидаемые приемлемые точностные характеристики, подтверждающие возможность эффективного использования системы и перспективность выбранного направления работ. At present, because of the ever-increasing degree of complexity of aircrafts design, production and operation, the improvement of the existing methods and development of new ones for vibration parameters measurement of aircrafts mechanical structural elements is still an important direction in the field of information-measurement systems development. The purpose of this work is to analyze the possibility and prospects of constructing a system for measuring vibrations of aircraft structural elements based on the use of micromechanical inertial measurement units as the main vibrometric transducers. In this case, the object of research is the vibration parameters measurement system, and the subject is its structure, composition, operations algorithms and the expected accuracy characteristics. To achieve this purpose, an information-measurement system is built on the basis of inertial devices, as well as sensors for direct displacements measurements, numerical and analytical methods of higher mathematics and theoretical mechanics, methods of random processes theory and optimal estimation are used. The article discusses the principles of constructing such system taking as an example a system for measuring the vibration parameters of an aircraft wing, provides a brief overview of the existing solutions in this field of applications and substantiates the relevance and expediency of the proposed methodology of the technical solution. The basic components and structure of the system are presented, the basic principles of its operation are described, based on the use of data from displacement sensors, inertial meters and optimal Kalman estimation and correction. The main algorithms of the system operation are shown, including the orientation and navigation algorithm, estimation and correction algorithm for a closed-open scheme of optimal Kalman filter inclusion in the system, algorithm for calculating vibration parameters, beside the mathematical errors models of the main system sensors and channels are presented, preliminary results of simulation modeling are shown and they demonstrate the operability of the system and its expected acceptable accuracy characteristics, confirming the possibility of the effective use of the proposed system and the prospects of the chosen direction of work.


Philosophies ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 70
Author(s):  
Diego Gabriel Krivochen ◽  
Andrea Padovan

Contemporary generative grammar assumes that syntactic structure is best described in terms of sets, and that locality conditions, as well as cross-linguistic variation, is determined at the level of designated functional heads. Syntactic operations (merge, MERGE, etc.) build a structure by deriving sets from lexical atoms and recursively (and monotonically) yielding sets of sets. Additional restrictions over the format of structural descriptions limit the number of elements involved in each operation to two at each derivational step, a head and a non-head. In this paper, we will explore an alternative direction for minimalist inquiry based on previous work, e.g., Frank (2002, 2006), albeit under novel assumptions. We propose a view of syntactic structure as a specification of relations in graphs, which correspond to the extended projection of lexical heads; these are elementary trees in Tree Adjoining Grammars. We present empirical motivation for a lexicalised approach to structure building, where the units of the grammar are elementary trees. Our proposal will be based on cross-linguistic evidence; we will consider the structure of elementary trees in Spanish, English and German. We will also explore the consequences of assuming that nodes in elementary trees are addresses for purposes of tree composition operations, substitution and adjunction.


2021 ◽  
Vol 3 ◽  
pp. 2
Author(s):  
Nicolas Behr ◽  
Jean Krivine

We extend the notion of compositional associative rewriting as recently studied in the rule algebra framework literature to the setting of rewriting rules with conditions. Our methodology is category-theoretical in nature, where the definition of rule composition operations encodes the non-deterministic sequential concurrent application of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with application conditions based upon M-adhesive categories. We uncover an intricate interplay between the category-theoretical concepts of conditions on rules and morphisms, the compositionality and compatibility of certain shift and transport constructions for conditions, and thirdly the property of associativity of the composition of rules.


Aksioma ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 98-111
Author(s):  
Fathurrahmah Abd. Gani ◽  
Dasa Ismaimuza ◽  
Sudarman Sudarman

Abstract: The aim of this research was to describe the profile of understanding the concept of class X MIA students based on the level of mathematical ability. The research was conducted at MA Alkhairaat Palu using a qualitative descriptive approach. The results of the study show that the understanding of the concept of ST in classifying the function of composition is that there is a function and operation of composition. Identify the characteristics of operations or concepts students use associative, distributive, composition operations and algebraic. Applying the concept students explain the properties and operations. Giving examples and not the composition function of the students explains the example, that there is an operation of composition and not there is no operation of the composition. Presenting the problem students presents in the form of mathematical models. Understanding the SS concept in classifying composition functions, namely a combination of functions associated with composition operations. Identify the characteristics of operations or concepts, namely the nature of distributive, operating composition and calculating algebra. Applying the concept students explain the properties and operations. Give an example and not an example of a composition function is an example is that there is a composition operation and not that there is no composition operation. Presenting problems in the form of mathematical models. Understanding the concept of SR in classifying the function of composition, namely there is a composition operation. Give an example and not an example of a composition function, is an example there is a composition operation and not an example, that is, there is no composition operation.


2020 ◽  
Vol 67 ◽  
pp. 757-795
Author(s):  
Dieuwke Hupkes ◽  
Verna Dankers ◽  
Mathijs Mul ◽  
Elia Bruni

Despite a multitude of empirical studies, little consensus exists on whether neural networks are able to generalise compositionally, a controversy that, in part, stems from a lack of agreement about what it means for a neural model to be compositional. As a response to this controversy, we present a set of tests that provide a bridge between, on the one hand, the vast amount of linguistic and philosophical theory about compositionality of language and, on the other, the successful neural models of language. We collect different interpretations of compositionality and translate them into five theoretically grounded tests for models that are formulated on a task-independent level. In particular, we provide tests to investigate (i) if models systematically recombine known parts and rules (ii) if models can extend their predictions beyond the length they have seen in the training data (iii) if models’ composition operations are local or global (iv) if models’ predictions are robust to synonym substitutions and (v) if models favour rules or exceptions during training. To demonstrate the usefulness of this evaluation paradigm, we instantiate these five tests on a highly compositional data set which we dub PCFG SET and apply the resulting tests to three popular sequence-to-sequence models: a recurrent, a convolution-based and a transformer model. We provide an in-depth analysis of the results, which uncover the strengths and weaknesses of these three architectures and point to potential areas of improvement.


2015 ◽  
Vol 41 (1) ◽  
pp. 165-173 ◽  
Author(s):  
Fabio Massimo Zanzotto ◽  
Lorenzo Ferrone ◽  
Marco Baroni

Distributional semantics has been extended to phrases and sentences by means of composition operations. We look at how these operations affect similarity measurements, showing that similarity equations of an important class of composition methods can be decomposed into operations performed on the subparts of the input phrases. This establishes a strong link between these models and convolution kernels.


2015 ◽  
Vol 41 (1) ◽  
pp. 71-118 ◽  
Author(s):  
Edward Grefenstette ◽  
Mehrnoosh Sadrzadeh

Modeling compositional meaning for sentences using empirical distributional methods has been a challenge for computational linguists. The categorical model of Clark, Coecke, and Sadrzadeh (2008) and Coecke, Sadrzadeh, and Clark (2010) provides a solution by unifying a categorial grammar and a distributional model of meaning. It takes into account syntactic relations during semantic vector composition operations. But the setting is abstract: It has not been evaluated on empirical data and applied to any language tasks. We generate concrete models for this setting by developing algorithms to construct tensors and linear maps and instantiate the abstract parameters using empirical data. We then evaluate our concrete models against several experiments, both existing and new, based on measuring how well models align with human judgments in a paraphrase detection task. Our results show the implementation of this general abstract framework to perform on par with or outperform other leading models in these experiments. 1


2014 ◽  
Vol 11 (04) ◽  
pp. 1442004 ◽  
Author(s):  
Jongmyung Choi ◽  
Youngho Lee ◽  
Young-Jae Ryoo ◽  
Jongsun Choi ◽  
Jaeyoung Choi

Smart robots and smart services using robots are promising research fields in academia and industry. However, those smart services are based on basic motions of the robot, such as grabbing objects, and moving them to a designated place. In this paper, we propose a way to produce new motions without programming, from existing motions, through a motion composition method. Our motion composition method utilizes an Action Petri net, which is a variance of a Petri net, with both interpolation and composition operations on a transition. In the Action Petri net, a place is a posture or a moving action of a robot, and it is represented as a diagonal matrix with the robot's joint motor values. Robot motions can be generated from one posture to another posture, and from composing different postures and moving actions. All operations performed to generate new motions are carried out as matrix manipulation operations. Our approach provides a formal method to generate new motions from existing motions, and a practical method to create new motions in low level motion control, without programming.


Sign in / Sign up

Export Citation Format

Share Document