Recursive isomorphism types of recursive Boolean algebras

1981 ◽  
Vol 46 (3) ◽  
pp. 572-594 ◽  
Author(s):  
J. B. Remmel

A Boolean algebra is recursive if B is a recursive subset of the natural numbers N and the operations ∧ (meet), ∨ (join), and ¬ (complement) are partial recursive. Given two Boolean algebras and , we write if is isomorphic to and if is recursively isomorphic to , that is, if there is a partial recursive function f: B1 → B2 which is an isomorphism from to . will denote the set of atoms of and () will denote the ideal generated by the atoms of .One of the main questions which motivated this paper is “To what extent does the classical isomorphism type of a recursive Boolean algebra restrict the possible recursion theoretic properties of ?” For example, it is easy to see that must be co-r.e. (i.e., N − is an r.e. set), but can be immune, not immune, cohesive, etc? It follows from a result of Goncharov [4] that there exist classical isomorphism types which contain recursive Boolean algebras but do not contain any recursive Boolean algebras such that is recursive. Thus the classical isomorphism can restrict the possible Turing degrees of , but what is the extent of this restriction? Another main question is “What is the recursion theoretic relationship between and () in a recursive Boolean algebra?” In our attempt to answer these questions, we were led to a wide variety of recursive isomorphism types which are contained in the classical isomorphism type of any recursive Boolean algebra with an infinite set of atoms.

1981 ◽  
Vol 46 (3) ◽  
pp. 595-616 ◽  
Author(s):  
Jeffrey B. Remmel

A Boolean algebra (henceforth abbreviated B.A.) is said to be recursive if B is a recursive subset of the natural numbers N and the operations ∧ (meet), ∨ (join), and ¬ (complement) are partial recursive. Let denote the set of atoms of and denote the ideal generated by the atoms of . Given recursive B.A.s and , we write ≈ if is isomorphic to and ≈r if is recursively isomorphic to , i.e., if there is a partial recursive isomorphism from onto .Recursive B.A.s have been studied by several authors including Ershov [2], Fiener [3], [4], Goncharov [5], [6], [7], LaRoche [8], Nurtazin [7], and the author [10], [11]. This paper continues a study of the recursion theoretic relationships among , , and the recursive isomorphism type of a recursive B.A. we started in [11]. We refer the reader to [11] for any unexplained notation and definitions. In [11], we were mainly concerned with the possible recursion theoretic properties of the set of atoms in recursive B.A.s. We found that even if we insist that be recursive, there is considerable freedom for the properties of . For example, we showed that if is a recursive B.A. such that is recursive and is infinite, then (i) there exists a recursive B.A. such that and both and are recursive and (ii) for any nonzero r.e. degree δ, there exist recursive B.A.s , , … such that for each i, is of degree δ, is recursive, is immune if i is even and is not immune if i is odd, and no two B.A.s in the sequence are recursively isomorphic.


2008 ◽  
Vol 73 (1) ◽  
pp. 261-275 ◽  
Author(s):  
J. Donald Monk

Recall that a subset X of an algebra A is irredundant iff x ∉ 〈X∖{x}〉 for all x ϵ X, where 〈X∖{x}) is the subalgebra generated by X∖{x}. By Zorn's lemma there is always a maximal irredundant set in an algebra. This gives rise to a natural cardinal function Irrmm(A) = min{∣X∣: X is a maximal irredundant subset of A}. The first half of this article is devoted to proving that there is an atomless Boolean algebra A of size 2ω for which Irrmm(A) = ω.A subset X of a BA A is ideal independent iff x ∉ (X∖{x}〉id for all x ϵ X, where 〈X∖{x}〉id is the ideal generated by X∖{x}. Again, by Zorn's lemma there is always a maximal ideal independent subset of any Boolean algebra. We then consider two associated functions. A spectrum functionSspect(A) = {∣X∣: X is a maximal ideal independent subset of A}and the least element of this set, smm(A). We show that many sets of infinite cardinals can appear as Sspect(A). The relationship of Smm to similar “continuum cardinals” is investigated. It is shown that it is relatively consistent that Smm/fin) < 2ω.We use the letter s here because of the relationship of ideal independence with the well-known cardinal invariant spread; see Monk [5]. Namely, sup{∣X∣: X is ideal independent in A} is the same as the spread of the Stone space Ult(A); the spread of a topological space X is the supremum of cardinalities of discrete subspaces.


2002 ◽  
Vol 67 (1) ◽  
pp. 369-396 ◽  
Author(s):  
Robert Bonnet ◽  
Matatyahu Rubin

AbstractLet B be a superatomic Boolean algebra (BA). The rank of B (rk(B)). is defined to be the Cantor Bendixon rank of the Stone space of B. If a ∈ B − {0}, then the rank of a in B (rk(a)). is defined to be the rank of the Boolean algebra . The rank of 0B is defined to be −1. An element a ∈ B − {0} is a generalized atom , if the last nonzero cardinal in the cardinal sequence of B ↾ a is 1. Let a, b ∈ . We denote a ˜ b, if rk(a) = rk(b) = rk(a · b). A subset H ⊆ is a complete set of representatives (CSR) for B, if for every a there is a unique h ∈ H such that h ~ a. Any CSR for B generates B. We say that B is canonically well-generated (CWG), if it has a CSR H such that the sublattice of B generated by H is well-founded. We say that B is well-generated, if it has a well-founded sublattice L such that L generates B.Theorem 1. Let B be a Boolean algebra with cardinal sequence . If B is CWG, then every subalgebra of B is CWG.A superatomic Boolean algebra B is essentially low (ESL), if it has a countable ideal I such that rk(B/I) ≤ 1.Theorem 1 follows from Theorem 2.9. which is the main result of this work. For an ESL BA B we define a set FB of partial functions from a certain countably infinite set to ω (Definition 2.8). Theorem 2.9 says that if B is an ESL Boolean algebra, then the following are equivalent.(1) Every subalgebra of B is CWG: and(2) FB is bounded.Theorem 2. If an ESL Boolean algebra is not CWG, then it has a subalgebra which is not well-generated.


2001 ◽  
Vol 66 (3) ◽  
pp. 1458-1470 ◽  
Author(s):  
A. S. Morozov ◽  
J. K. Truss

AbstractThe relationship between ideals I of Turing degrees and groups of I-recursive automorphisms of the ordering on rationals is studied. We discuss the differences between such groups and the group of all automorphisms, prove that the isomorphism type of such a group completely defines the ideal I, and outline a general correspondence between principal ideals of Turing degrees and the first-order properties of such groups.


2002 ◽  
Vol 02 (02) ◽  
pp. 145-225 ◽  
Author(s):  
STEFFEN LEMPP ◽  
MIKHAIL PERETYAT'KIN ◽  
REED SOLOMON

In this paper, we investigate the Lindenbaum algebra ℒ(T fin ) of the theory T fin = Th (M fin ) of the class M fin of all finite models of a finite rich signature. We prove that this algebra is an atomic Boolean algebra while its Gödel numeration γ is a [Formula: see text]-numeration. Moreover, the quotient algebra (ℒ(T fin )/ℱ, γ/ℱ) modulo the Fréchet ideal ℱ is a [Formula: see text]-algebra, which is universal over the class of all [Formula: see text] Boolean algebras. These conditions characterize uniquely the algebra ℒ(T fin ); moreover, these conditions characterize up to recursive isomorphism the numerated Boolean quotient algebra (ℒ(T fin )/ℱ, γ/ℱ). These results extend the work of Trakhtenbrot [17] and Vaught [18] on the first order theory of the class of all finite models of a finite rich signature.


1984 ◽  
Vol 49 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Robert E. Byerly

In [1] two interesting invariance notions were introduced: the notions of a set of godel numbers being invariant to automorphisms of the structures (ω, ·) and (ω, E) respectively. Here, · and E are defined by n · m ≃ φn (m) and nEm if and only if n Є Wm, where {φn} and {Wn} are acceptable enumerations of the partial recursive functions and r.e. sets respectively. In this paper we continue the study of the invariant sets, and especially the invariant r.e. sets, of gödel numbers.We start off with an easy result which characterizes the Turing degrees containing invariant sets. We then take a closer look at r.e. sets invariant with respect to automorphisms of (ω,E). Using the characterization [1, Theorem 4.2] of such sets, we will derive a somewhat different characterization (which was stated, but not proved, in [1, Proposition 4.4]) and, using it as a tool for constructing invariant sets, prove that the r.e. sets invariant with respect to automorphisms of (ω, E) cannot be effectively enumerated.We will next discuss representations of r.e. sets invariant with respect to automorphisms of (ω, ·). Although these sets do not have as nice a characterization as the r.e. sets invariant with respect to automorphisms of (ω, E) do, the techniques of [1] can still profitably be used to investigate their structure. In particular, if f is a partial recursive function whose graph is invariant with respect to automorphisms of (ω, ·), then for every a in the domain of f, there is a term t(a) built up from a and · only such that f(a) ≃ t(a). This is an analog to [1, Corollary 4.3]. We will also prove an analog to a result mentioned in the previous paragraph: the r.e. sets invariant with respect to automorphisms of (ω, ·) cannot be effectively enumerated.


1970 ◽  
Vol 11 (2) ◽  
pp. 156-161 ◽  
Author(s):  
C. R. Atherton

This paper may be regarded as a continuation of the investigations begun in [2]; certain intrinsic lattice topologies are studied, especially the order and ideal topologies in Boolean algebras, bicompactly generated lattices, and other more general structures. The results of [1], [2], and [3] are shown to be closely related. It is proved that the ideal topology on any Boolean algebra has a closed subbase consisting of all sublattices, whereas the order topology on an atomic Boolean algebra has a closed subbase consisting of all sub-complete lattices. It is also shown that the order topology on an atomic Boolean algebra is autouniformizable (in the sense defined by Rema [3]) and, if the ground set is infinite, strictly coarser than the ideal topology. The conditions Cl and C3 on a lattice, introduced by Kent [1], are shown to be slightly stronger than the condition “ bicompactly generated ”, and in complete lattices, where these conditions are satisfied, the order topology is shown to be coarser than the ideal topology.


2019 ◽  
Vol 85 (1) ◽  
pp. 109-148
Author(s):  
NICK BEZHANISHVILI ◽  
WESLEY H. HOLLIDAY

AbstractThe standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.


1980 ◽  
Vol 45 (2) ◽  
pp. 265-283 ◽  
Author(s):  
Matatyahu Rubin ◽  
Saharon Shelah

AbstractTheorem 1. (◊ℵ1,) If B is an infinite Boolean algebra (BA), then there is B1, such that ∣ Aut (B1) ≤∣B1∣ = ℵ1 and 〈B1, Aut (B1)〉 ≡ 〈B, Aut(B)〉.Theorem 2. (◊ℵ1) There is a countably compact logic stronger than first-order logic even on finite models.This partially answers a question of H. Friedman. These theorems appear in §§1 and 2.Theorem 3. (a) (◊ℵ1) If B is an atomic ℵ-saturated infinite BA, Ψ Є Lω1ω and 〈B, Aut (B)〉 ⊨Ψ then there is B1, Such that ∣Aut(B1)∣ ≤ ∣B1∣ =ℵ1, and 〈B1, Aut(B1)〉⊨Ψ. In particular if B is 1-homogeneous so is B1. (b) (a) holds for B = P(ω) even if we assume only CH.


1962 ◽  
Vol 5 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Günter Bruns

Let B be a Boolean algebra and let ℳ and n be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join ∨M of every set M∊ℳ and the meet ∧N of every set N∊n exist. Several authors have treated the question under which conditions there exists an isomorphism φ between B and a field δ of sets, satisfying the conditions:


Sign in / Sign up

Export Citation Format

Share Document