Angus Macintyre. Ramsey quantifiers in arithmetic. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 186–210. - James H. Schmerl and Stephen G. Simpson. On the role of Ramsey quantifiers in first order arithmetic. The journal of symbolic logic, vol. 47 (1982), pp. 423–435. - Carl Morgenstern. On generalized quantifiers in arithmetic. The journal of symbolic logic, vol. 47 (1982), pp. 187–190.

1985 ◽  
Vol 50 (4) ◽  
pp. 1078-1079
Author(s):  
L. A. S. Kirby

Jon Barwise and John Schlipf. On recursively saturated models of arithmetic. Model theory and algebra, A memorial tribute to Abraham Robinson, edited by D. H. Saracino and V. B. Weispfenning, Lecture notes in mathematics, vol. 498, Springer-Verlag, Berlin, Heidelberg, and New York, 1975, pp. 42–55. - Patrick Cegielski, Kenneth McAloon, and George Wilmers. Modèles récursivement saturés de l'addition et de la multiplication des entiers naturels. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 57–68. - Julia F. Knight. Theories whose resplendent models are homogeneous. Israel journal of mathematics, vol. 42 (1982), pp. 151–161. - Julia Knight and Mark Nadel. Expansions of models and Turing degrees. The journal of symbolic logic, vol. 47 (1982), pp. 587–604. - Julia Knight and Mark Nadel. Models of arithmetic and closed ideals. The journal of symbolic logic, vol. 47 no. 4 (for 1982, pub. 1983), pp. 833–840. - Henryk Kotlarski. On elementary cuts in models of arithmetic. Fundamenta mathematicae, vol. 115 (1983), pp. 27–31. - H. Kotlarski, S. Krajewski, and A. H. Lachlan. Construction of satisfaction classes for nonstandard models. Canadian mathematical bulletin—Bulletin canadien de mathématiques, vol. 24 (1981), pp. 283–293. - A. H. Lachlan. Full satisfaction classes and recursive saturation. Canadian mathematical bulletin—Bulletin canadien de mathématiques, pp. 295–297. - Leonard Lipshitz and Mark Nadel. The additive structure of models of arithmetic. Proceedings of the American Mathematical Society, vol. 68 (1978), pp. 331–336. - Mark Nadel. On a problem of MacDowell and Specker. The journal of symbolic logic, vol. 45 (1980), pp. 612–622. - C. Smoryński. Back-and-forth inside a recursively saturated model of arithmetic. Logic Colloquium '80, Papers intended for the European summer meeting of the Association for Symbolic Logic, edited by D. van Dalen, D. Lascar, and T. J. Smiley, Studies in logic and the foundations of mathematics, vol. 108, North-Holland Publishing Company, Amsterdam, New York, and London, 1982, pp. 273–278. - C. Smoryński and J. Stavi. Cofinal extension preserves recursive saturation. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7,1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 338–345. - George Wilmers. Minimally saturated models. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 370–380.

1987 ◽  
Vol 52 (1) ◽  
pp. 279-284
Author(s):  
J.-P. Ressayre

Angus Macintyre, Kenneth McKenna, and Lou van den Dries. Elimination of quantifiers in algebraic structures. Advances in mathematics, vol. 47 (1983), pp. 74–87. - L. P. D. van den Dries. A linearly ordered ring whose theory admits elimination of quantifiers is a real closed field. Proceedings of the American Mathematical Society, vol. 79 (1980), pp. 97–100. - Bruce I. Rose. Rings which admit elimination of quantifiers. The journal of symbolic logic, vol. 43 (1978), pp. 92–112; Corrigendum, vol. 44 (1979), pp. 109–110. - Chantal Berline. Rings which admit elimination of quantifiers. The journal of symbolic logic, vol. 43 (1978), vol. 46 (1981), pp. 56–58. - M. Boffa, A. Macintyre, and F. Point. The quantifier elimination problem for rings without nilpotent elements and for semi-simple rings. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 20–30. - Chantal Berline. Elimination of quantifiers for non semi-simple rings of characteristic p. Model theory of algebra and arithmetic, Proceedings of the Conference on Applications of Logic to Algebra and Arithmetic held at Karpacz, Poland, September 1–7, 1979, edited by L. Pacholski, J. Wierzejewski, and A. J. Wilkie, Lecture notes in mathematics, vol. 834, Springer-Verlag, Berlin, Heidelberg, and New York, 1980, pp. 10–19.

1985 ◽  
Vol 50 (4) ◽  
pp. 1079-1080
Author(s):  
Gregory L. Cherlin

1982 ◽  
Vol 47 (2) ◽  
pp. 423-435 ◽  
Author(s):  
James H. Schmerl ◽  
Stephen G. Simpson

The purpose of this paper is to study a formal system PA(Q2) of first order Peano arithmetic, PA, augmented by a Ramsey quantifier Q2 which binds two free variables. The intended meaning of Q2xx′φ(x, x′) is that there exists an infinite set X of natural numbers such that φ(a, a′) holds for all a, a′ Є X such that a ≠ a′. Such an X is called a witness set for Q2xx′φ(x, x′). Our results would not be affected by the addition of further Ramsey quantifiers Q3, Q4, …, Here of course the intended meaning of Qkx1 … xkφ(x1,…xk) is that there exists an infinite set X such that φ(a1…, ak) holds for all k-element subsets {a1, … ak} of X.Ramsey quantifiers were first introduced in a general model theoretic setting by Magidor and Malitz [13]. The system PA{Q2), or rather, a system essentially equivalent to it, was first defined and studied by Macintyre [12]. Some of Macintyre's results were obtained independently by Morgenstern [15]. The present paper is essentially self-contained, but all of our results have been directly inspired by those of Macintyre [12].After some preliminaries in §1, we begin in §2 by giving a new completeness proof for PA(Q2). A by-product of our proof is that for every regular uncountable cardinal k, every consistent extension of PA(Q2) has a k-like model in which all classes are definable. (By a class we mean a subset of the universe of the model, every initial segment of which is finite in the sense of the model.)


2004 ◽  
Vol 10 (1) ◽  
pp. 37-53 ◽  
Author(s):  
Jouko Väänänen

§1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness. Any set of sentences of cardinality ≤ κ, every finite subset of which has a model, has itself a model. Löwenheim-Skolem Theorem down to κ. If a sentence of the logic has a model, it has a model of cardinality at most κ. Interpolation Property. If ϕ and ψ are sentences such that ⊨ ϕ → Ψ, then there is θ such that ⊨ ϕ → θ, ⊨ θ → Ψ and the vocabulary of θ is the intersection of the vocabularies of ϕ and Ψ.Lindstrom's famous theorem characterized first order logic as the maximal ℵ0-compact logic with Downward Löwenheim-Skolem Theorem down to ℵ0. With his new concept of absolute logics Barwise was able to get similar characterizations of infinitary languages Lκω. But hopes were quickly frustrated by difficulties arising left and right, and other areas of model theory came into focus, mainly stability theory. No new characterizations of logics comparable to the early characterization of first order logic given by Lindström and of infinitary logic by Barwise emerged. What was first called soft model theory turned out to be as hard as hard model theory.


Sign in / Sign up

Export Citation Format

Share Document