Simplified morasses with linear limits

1984 ◽  
Vol 49 (4) ◽  
pp. 1001-1021 ◽  
Author(s):  
Dan Velleman

In a recent series of papers Kanamori ([4], [5], and [6]) defines generalizations of several combinatorial principles known to follow from the existence of morasses. Kanamori proves the consistency of his generalizations by forcing arguments which come close to satisfying the hypotheses of the Martin's Axiom-type characterizations of morasses developed independently by Shelah and Stanley [9] and the author [12]. A similar “almost application” of morasses appears in [11], in which Todorčević uses forcing to prove the consistency of the existence of Kurepa trees with no Aronszajn or Cantor subtrees. In all cases the attempted proofs using morasses fail for the same reason: the partial orders involved do not have strong enough closure properties.In an attempt to solve this problem Shelah and Stanley strengthened their characterization of morasses to allow applications to what they called “good canonical limit” partial orders. However, for rather subtle reasons even this strengthened forcing axiom is not good enough for the proposed applications. The problem this time is that Shelah and Stanley's “weak commutativity of Lim and restriction” requirement (see [9, 3.9(iv)]) is not satisfied. Furthermore, there is reason to believe that an ordinary morass is just not good enough for these applications, since in L morasses exist at all regular uncountable cardinals, but even a weak form of Todorčević's conclusion cannot hold at ineffable cardinals (see the end of §4).A possible solution to this problem is suggested by the fact that □κ is equivalent to a forcing axiom which applies to partial orders satisfying precisely the kind of weak closure conditions involved in the examples described above (see [13]). What is needed to make the proposed morass applications work is something which will do for morass constructions what □κ does for ordinary transfinite recursion constructions. In this paper we show how extra structure can be built into a morass to accomplish this goal.

1983 ◽  
Vol 48 (4) ◽  
pp. 1046-1052 ◽  
Author(s):  
Dan Velleman

It is well known that many statements provable from combinatorial principles true in the constructible universe L can also be shown to be consistent with ZFC by forcing. Recent work by Shelah and Stanley [4] and the author [5] has clarified the relationship between the axiom of constructibility and forcing by providing Martin's Axiom-type forcing axioms equivalent to ◊ and the existence of morasses. In this paper we continue this line of research by providing a forcing axiom equivalent to □κ. The forcing axiom generalizes easily to inaccessible, non-Mahlo cardinals, and provides the motivation for a corresponding generalization of □κ.In order to state our forcing axiom, we will need to define a strategic closure condition for partial orders. Suppose P = 〈P, ≤〉 is a partial order. For each ordinal α we will consider a game played by two players, Good and Bad. The players choose, in order, the terms in a descending sequence of conditions 〈pβ∣β < α〉 Good chooses all terms pβ for limit β, and Bad chooses all the others. Bad wins if for some limit β<α, Good is unable to move at stage β because 〈pγ∣γ < β〉 has no lower bound. Otherwise, Good wins. Of course, we will be rooting for Good.


2018 ◽  
Vol 50 (3) ◽  
pp. 706-725
Author(s):  
Julie Fournier

Abstract A deterministic application θ:ℝ2→ℝ2 deforms bijectively and regularly the plane and allows the construction of a deformed random field X∘θ:ℝ2→ℝ from a regular, stationary, and isotropic random field X:ℝ2→ℝ. The deformed field X∘θ is, in general, not isotropic (and not even stationary), however, we provide an explicit characterization of the deformations θ that preserve the isotropy. Further assuming that X is Gaussian, we introduce a weak form of isotropy of the field X∘θ, defined by an invariance property of the mean Euler characteristic of some of its excursion sets. We prove that deformed fields satisfying this property are strictly isotropic. In addition, we are able to identify θ, assuming that the mean Euler characteristic of excursion sets of X∘θ over some basic domain is known.


2013 ◽  
Vol 12 (05) ◽  
pp. 1250214
Author(s):  
HUGO A. RINCÓN-MEJÍA ◽  
MANUEL G. ZORRILLA-NORIEGA

This article consists of two sections. In the first one, the concepts of spanning and cospanning classes of modules, both hereditarily and cohereditarily, are explained, and some closure properties of the class of modules hereditarily cospanned by a conatural class are established, which amount to its being a hereditary torsion class. This gives a function from R-conat to R-tors and it is proven that its being a lattice isomorphism is part of a characterization of bilaterally perfect rings. The second section begins considering a description of pseudocomplements in certain lattices of module classes. The idea is generalized to define an inclusion-reversing operation on the collection of classes of modules. Restricted to R-nat, it is shown to be a function onto R-tors, and its being an anti-isomorphism is equivalent to R being left semiartinian. Lastly, another characterization of R being left semiartinian is given, in terms solely of R-tors.


2008 ◽  
Vol 73 (3) ◽  
pp. 1029-1035
Author(s):  
Justin Tatch Moore

AbstractThe purpose of this note is to demonstrate that a weak form of club guessing on ω1implies the existence of an Aronszajn line with no Countryman suborders. An immediate consequence is that the existence of a five element basis for the uncountable linear orders does not follow from the forcing axiom for ω-proper forcings.


2003 ◽  
Vol 125 (2) ◽  
pp. 325-332 ◽  
Author(s):  
Michael Yu Wang ◽  
Diana M. Pelinescu

Analysis and characterization of workpiece-fixture contact forces are important in fixture design since they define the fixture stability during clamping and strongly influence workpiece accuracy during manufacturing. This paper presents a method for predicting and analyzing the normal and frictional contact forces between workpiece-fixture contacts. The fixture and workpiece are considered to be rigid bodies, and the model solution is solved as a constrained quadratic optimization by applying the minimum norm principle. The model reveals some intricate properties of the passive contact forces, including the potential of a locator release and the history dependency during a sequence of clamping and/or external force loading. Further, a notion of passive force closure is considered to characterize the passive nature of the fixture forces. Geometric conditions for two types of passive force closure (concordant and discordant closures) are provided, showing a complication of released locator under clamping with a limited role in force closure. Model predictions are shown to be in good agreement with known results of an elastic-contact model prediction and experimental measurements. The passive force closure conditions are illustrated with examples. This presented method is conceptually simple and computationally efficient. It is particularly useful in the early stages of fixture design and process planning.


2010 ◽  
Vol 10 (9&10) ◽  
pp. 747-770
Author(s):  
Abuzer Yakaryilmaz ◽  
A.C. Cem Say

The nondeterministic quantum finite automaton (NQFA) is the only known case where a one-way quantum finite automaton (QFA) model has been shown to be strictly superior in terms of language recognition power to its probabilistic counterpart. We give a characterization of the class of languages recognized by NQFAs, demonstrating that it is equal to the class of exclusive stochastic languages. We also characterize the class of languages that are recognized necessarily by two-sided error by QFAs. It is shown that these classes remain the same when the QFAs used in their definitions are replaced by several different model variants that have appeared in the literature. We prove several closure properties of the related classes. The ramifications of these results about classical and quantum sublogarithmic space complexity classes are examined.


2003 ◽  
Vol 807 ◽  
Author(s):  
Ulrich Kuhlmann ◽  
Paul Marschall

Hydrodynamic modelling on the site- and repository scale was aimed at testing the performance of both, geological and engineered barriers as part of the Swiss program for disposal of high- and intermediate-level radioactive waste. Conceptual and parameter uncertainties were addressed by sensitivity studies to explore the robustness of the overall disposal concept. Consistency was demonstrated between modelling results and hydrogeological and geochemical evidence from the Benken borehole, increasing confidence in the comprehension of the key hydrogeological features of the candidate repository site. Assessment of a wide spectrum of repository closure conditions highlighted the function of the waste confinement concept. Visualisation and animation of the modelling results has proven to be of great help in communicating the level of comprehension of groundwater movement in the vicinity of a potential repository in the Zürcher Weinland.


1987 ◽  
Vol 52 (1) ◽  
pp. 89-110 ◽  
Author(s):  
M. W. Bunder

It is well known that combinatory logic with unrestricted introduction and elimination rules for implication is inconsistent in the strong sense that an arbitrary term Y is provable. The simplest proof of this, now usually called Curry's paradox, involves for an arbitrary term Y, a term X defined by X = Y(CPy).The fact that X = PXY = X ⊃ Y is an essential part of the proof.The paradox can be avoided by placing restrictions on the implication introduction rule or on the axioms from which it can be proved.In this paper we determine the forms that must be taken by inconsistency proofs of systems of propositional calculus based on combinatory logic, with arbitrary restrictions on both the introduction and elimination rules for the connectives. Generally such a proof will involve terms without normal form and cut formulas, i.e. formulas formed by an introduction rule that are immediately removed by an elimination with at most some equality steps intervening. (Such a sequence of steps we call a “cut”.)The above applies not only to the strong form of inconsistency defined above, but also to the weak form of inconsistency defined by: all propositions are provable, if this can be represented in the system.Any inconsistency proof of this kind of system can be reduced to one where the major premise of the elimination rule involved in the cut and its deduction must also appear in the deduction of the minor premise involved in the cut.We can, using this characterization of inconsistency proofs, put appropriate restrictions on certain introduction rules so that the systems, including a full classical propositional one, become provably consistent.


1965 ◽  
Vol 30 (2) ◽  
pp. 155-174 ◽  
Author(s):  
W. W. Tait

This paper deals mainly with quantifier-free second order systems (i.e., with free variables for numbers and functions, and constants for numbers, functions, and functionals) whose basic rules are those of primitive recursive arithmetic together with definition of functionals by primitive recursion and explicit definition. Precise descriptions are given in §2. The additional rules have the form of definition by transfinite recursion up to some ordinal ξ (where ξ is represented by a primitive recursive (p.r.) ordering). In §3 we discuss some elementary closure properties (under rules of inference and definition) of systems with recursion up to ξ. Let Rξ denote (temporarily) the system with recursion up to ξ. The main results of this paper are of two sorts:Sections 5–7 are concerned with less elementary closure properties of the systems Rξ. Namely, we show that certain classes of functional equations in Rη can be solved in Rη for some explicitly determined η < ε(η) (the least ε-number > ξ). The classes of functional equations considered all have roughly the form of definition by recursion on the partial ordering of unsecured sequences of a given functional F, or on some ordering which is obtained from this by simple ordinal operations. The key lemma (Theorem 1) needed for the reduction of these equations to transfinite recursion is simply a sharpening of the Brouwer-Kleene idea.


Sign in / Sign up

Export Citation Format

Share Document