constrained quadratic optimization
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 1)

Author(s):  
Amin Ghorbanpour ◽  
Hanz Richter

Abstract In this work, a new drive concept for brushless direct current (BLDC) motors is introduced. Energy regeneration is optimally managed with the aim of improving the energy efficiency of robot motion controls. The proposed scheme has three independent regenerative drives interconnected in a wye configuration. An augmented model of the robot, joint mechanisms, and BLDC motors is formed, and then a voltage-based control scheme is developed. The control law is obtained by specifying an outer-loop torque controller followed by minimization of power consumption via online constrained quadratic optimization. An experiment is conducted to assess the performance of the proposed concept against an off-the-shelf driver. It is shown that, in terms of energy regeneration and consumption, the developed driver has better performance. Furthermore, the proposed concept showed a reduction of 15% energy consumption for the conditions of the study.


2021 ◽  
pp. 1-23
Author(s):  
Moussa BARRO ◽  
Satafa SANOGO ◽  
Mohamed ZONGO ◽  
Sado TRAORÉ

Robust Optimization (RO) arises in two stages of optimization, first level for maximizing over the uncertain data and second level for minimizing over the feasible set. It is the most suitable mathematical optimization procedure to solve real-life problem models. In the present work, we characterize robust solutions for both homogeneous and non-homogeneous quadratically constrained quadratic optimization problem where constraint function and cost function are uncertain. Moreover, we discuss about optimistic dual and strong robust duality of the considered uncertain quadratic optimization problem. Finally, we complete this work with an example to illustrate our solution method. Mathematics Subject Classification: (2010) 90C20 - 90C26 - 90C46-90C47 Keywords: Robust Optimization, Data Uncertainty, Quadratic Optimization Strong Duality, Robust Solution, DPJ-Convex.


2021 ◽  
Vol 11 (8) ◽  
pp. 3464
Author(s):  
Balázs Németh ◽  
Péter Gáspár

The design of the motion of autonomous vehicles in non-signalized intersections with the consideration of multiple criteria and safety constraints is a challenging problem with several tasks. In this paper, a learning-based control solution with guarantees for collision avoidance is proposed. The design problem is formed in a novel way through the division of the control problem, which leads to reduced complexity for achieving real-time computation. First, an environment model for the intersection was created based on a constrained quadratic optimization, with which guarantees on collision avoidance can be provided. A robust cruise controller for the autonomous vehicle was also designed. Second, the environment model was used in the training process, which was based on a reinforcement learning method. The goal of the training was to improve the economy of autonomous vehicles, while guaranteeing collision avoidance. The effectiveness of the method is presented through simulation examples in non-signalized intersection scenarios with varying numbers of vehicles.


Author(s):  
Amin Ghorbanpour ◽  
Hanz Richter

Abstract In this work, simultaneous energy regeneration and motion control for robot manipulators with brushless direct current (BLDC) motors is considered. All joints of the robot are connected to regenerative drives powered from a single ultra-capacitor. A new voltage-based control method is developed to individually command each phase of the BLDC motor. Three independent regenerative drives are interconnected in a wye configuration, and each drives a phase of the motor. The objective is to determine the control inputs for each drive to minimize energy consumption from the ultra-capacitor for a given motion task. To this end, the problem is formulated as constrained quadratic optimization problem that gives the control inputs based on the desired torque generated by a virtual controller. An experimental evaluation is performed using a pendulum actuated by a BLDC motor. It is shown that the suggested control method can accomplish the motion task and it is capable of energy regeneration. The results show a reduction of about 40% in energy consumption for the condition of the study, relative to non-regenerative case.


2020 ◽  
Vol 78 (3) ◽  
pp. 423-451
Author(s):  
Ramtin Madani ◽  
Mohsen Kheirandishfard ◽  
Javad Lavaei ◽  
Alper Atamtürk

Sign in / Sign up

Export Citation Format

Share Document