On the elementary theory of restricted elementary functions

1988 ◽  
Vol 53 (3) ◽  
pp. 796-808 ◽  
Author(s):  
Lou van den Dries

As a contribution to definability theory in the spirit of Tarski's classical work on (R, <, 0, 1, +, ·) we extend here part of his results to the structureHere exp ∣[0, 1] and sin ∣[0, π] are the restrictions of the exponential and sine function to the closed intervals indicated; formally we identify these restricted functions with their graphs and regard these as binary relations on R. The superscript “RE” stands for “restricted elementary” since, given any elementary function, one can in general only define certain restrictions of it in RRE.Let (RRE, constants) be the expansion of RRE obtained by adding a name for each real number to the language. We can now formulate our main result as follows.Theorem. (RRE, constants) is strongly model-complete.This means that every formula ϕ(X1, …, Xm) in the natural language of (RRE, constants) is equivalent to an existential formulawith the extra property that for each x ∈ Rm such that ϕ(x) is true in RRE there is exactly one y ∈ Rn such that ψ(x, y) is true in RRE. (Here ψ is quantifier free.)

2011 ◽  
Vol 32 (2) ◽  
pp. 785-807 ◽  
Author(s):  
ELON LINDENSTRAUSS ◽  
URI SHAPIRA

AbstractWe give new classes of examples of orbits of the diagonal group in the space of unit volume lattices in ℝd for d≥3 with nice (homogeneous) orbit closures, as well as examples of orbits with explicitly computable but irregular orbit closures. We give Diophantine applications to the former; for instance, we show that, for all γ,δ∈ℝ, where 〈c〉 denotes the distance of a real number c to the integers.


1967 ◽  
Vol 15 (4) ◽  
pp. 249-255
Author(s):  
Sean Mc Donagh

1. In deriving an expression for the number of representations of a sufficiently large integer N in the formwhere k: is a positive integer, s(k) a suitably large function of k and pi is a prime number, i = 1, 2, …, s(k), by Vinogradov's method it is necessary to obtain estimates for trigonometrical sums of the typewhere ω = l/k and the real number a satisfies 0 ≦ α ≦ 1 and is “near” a rational number a/q, (a, q) = 1, with “large” denominator q. See Estermann (1), Chapter 3, for the case k = 1 or Hua (2), for the general case. The meaning of “near” and “arge” is made clear below—Lemma 4—as it is necessary for us to quote Hua's estimate. In this paper, in Theorem 1, an estimate is obtained for the trigonometrical sumwhere α satisfies the same conditions as above and where π denotes a squarefree number with r prime factors. This estimate enables one to derive expressions for the number of representations of a sufficiently large integer N in the formwhere s(k) has the same meaning as above and where πri, i = 1, 2, …, s(k), denotes a square-free integer with ri prime factors.


Author(s):  
MARTIN BUNDER ◽  
PETER NICKOLAS ◽  
JOSEPH TONIEN

For a positive real number $t$ , define the harmonic continued fraction $$\begin{eqnarray}\text{HCF}(t)=\biggl[\frac{t}{1},\frac{t}{2},\frac{t}{3},\ldots \biggr].\end{eqnarray}$$ We prove that $$\begin{eqnarray}\text{HCF}(t)=\frac{1}{1-2t(\frac{1}{t+2}-\frac{1}{t+4}+\frac{1}{t+6}-\cdots \,)}.\end{eqnarray}$$


1959 ◽  
Vol 2 (2) ◽  
pp. 119-121 ◽  
Author(s):  
Leo Moser

One of the most elegant results of the elementary theory of the distribution of primes is that1where the product runs over primes. A very simple proof of (1) has recently been given by Erdös and Kalmar [1], [2].


2018 ◽  
Vol 83 (3) ◽  
pp. 1204-1216 ◽  
Author(s):  
OLGA KHARLAMPOVICH ◽  
ALEXEI MYASNIKOV

AbstractLet R be a commutative integral unital domain and L a free noncommutative Lie algebra over R. In this article we show that the ring R and its action on L are 0-interpretable in L, viewed as a ring with the standard ring language $+ , \cdot ,0$. Furthermore, if R has characteristic zero then we prove that the elementary theory $Th\left( L \right)$ of L in the standard ring language is undecidable. To do so we show that the arithmetic ${\Bbb N} = \langle {\Bbb N}, + , \cdot ,0\rangle $ is 0-interpretable in L. This implies that the theory of $Th\left( L \right)$ has the independence property. These results answer some old questions on model theory of free Lie algebras.


2017 ◽  
Vol 82 (2) ◽  
pp. 474-488
Author(s):  
MOSHE JARDEN ◽  
ALEXANDRA SHLAPENTOKH

AbstractWe discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.


1989 ◽  
Vol 41 (1) ◽  
pp. 106-122 ◽  
Author(s):  
Attila Máté ◽  
Paul Nevai

The main result of this paper concerns the eigenvalues of an operator in the Hilbert space l2that is represented by a matrix having zeros everywhere except in a neighborhood of the main diagonal. Write (c)+ for the positive part of a real number c, i.e., put (c+ = cif c≧ 0 and (c)+=0 otherwise. Then this result can be formulated as follows. Theorem 1.1. Let k ≧ 1 be an integer, and consider the operator S on l2 such that


Author(s):  
A. E. Ingham

1. In this note we give a direct evaluation of the integralwhose value has been inferred from the theory of statistics. Here A = Ap = (αμν) and C = Cp = (Cμν) are real symmetrical matrices, of which A is positive definite; there are ½ p (p + 1) independent variables of integration tμν (1 ≤ μ ≤ ν ≤ p), and tμν is written also as tνμ for symmetry of notation; in the summation ∑ the variables μ, ν run independently from 1 to p; k is a real number. A word of explanation is necessary with regard to the determination of the power |A − iT|−k. Since A is positive definite and T real and symmetric, the roots of the equation


1957 ◽  
Vol 53 (2) ◽  
pp. 312-317 ◽  
Author(s):  
Trevor J. Mcminn

1. Introduction. Let 0 < λ < 1 and remove from the closed unit interval the open interval of length λ concentric with the unit interval. From each of the two remaining closed intervals of length ½(1 − λ) remove the concentric open interval of length ½λ(1 − λ). From each of the four remaining closed intervals of length ¼λ(1 − λ)2 remove the concentric open interval of length ¼λ(l − λ)2, etc. The remaining set is a perfect non-dense set of Lebesgue measure zero and is the Cantor set for λ = ⅓. Let Tλr be the Cartesian product of this set with the set similar to it obtained by magnifying it by a factor r > 0. Letting L be Carathéodory linear measure (1) and letting G be Gillespie linear square(2), Randolph(3) has established the following relations:


1964 ◽  
Vol 4 (1) ◽  
pp. 122-128
Author(s):  
P. D. Finch

A discrete renewal process is a sequence {X4} of independently and inentically distributed random variables which can take on only those values which are positive integral multiples of a positive real number δ. For notational convenience we take δ = 1 and write where .


Sign in / Sign up

Export Citation Format

Share Document